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ABSTRACT

Compressive stress-strain measurements are reported for bonded disks of natural rubber having shape
factors (= d/4t, where d is the diameter and t the thickness) ranging from 0.87 to 12.95. The data are compared to var-
ious models for compressed rubber, utilizing the tensile and bulk moduli determined for this material. We find that for
thin disks, the measured stiffness is less that the theoretical predictions by roughly a factor of two. A similar discrepan-
cy was found previously, both for elastomers and semi-crystalline polymer films. However, for smaller aspect ratios, the
difference between experiment and theory is less than the measurement error.

INTRODUCTION

There are many practical situations in which a soft, nearly incompressible material, such as
rubber, is bonded and compressed between rigid plates. Applications include mechanical1–4 and
electrostriction measurements,5–7 civil engineering structures such as base isolation bearings in
bridges and buildings,8,9 and medical uses such as periodontal membranes.10 The stress-strain
relationship for bonded rubber in compression is complex, and notwithstanding its wide use, the
analysis remains controversial.

The simplest and most popular analysis is due to Gent and Lindley.11 The deformation was
assumed to have a parabolic profile, with the total stress the superposition of two independent
forces: (i) normal stresses due to uniform compression, corresponding to the ‘slip’ condition of
rubber between lubricated plates, and (ii) a shear stress arising from the constraints due to bond-
ed ends. If the material is incompressible and the deformation is small enough to remain in the
linear range, Gent and Lindley11 derived the ‘apparent’Young’s modulus as

(1)

for cylindrical disks, where E is Young’s modulus of the material and S is the shape factor, de-
fined as the ratio of one loaded area to the force-free area (= d/4t, where d is the diameter and t
the thickness). For very thin sheets (large S), bulk volume changes become important, contradict-
ing the assumption of incompressibility. To account for this, Gent and Lindley11 reasoned empiri-
cally that the apparent modulus can be represented by 

(2)

where B is the bulk modulus. 
Using the same basic assumptions of superposition of two forces and a parabolic profile,

Gent12,13 derived an expression using linear elasticity which incorporated near incompressibili-
ty. The apparent Young’s modulus was found to be
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where I2 and I0 are the modified, or hyperbolic, Bessel functions of the first kind, of order two
and zero, respectively. The parameter ζ is defined as

(4)

where ν is Poisson’s ratio. Horton et al.14 eliminated the assumption of a parabolic profile, and
obtained a different expression, again using the superposition of normal and shear forces:

(5)

For sufficiently large, thin sheets, S→∞, and an expression can be derived from linear elasticity
that is independent of the sample dimensions,6 by assuming that strains are confined to the ap-
plied load direction:

(6)

This relation serves as an upper bound to EA, and approaches the bulk modulus as ν→1/2. 
These various models are compared in Figure 1, for an elastomer with B = 2000E. At inter-

mediate shape factors, 2 < S < 9, the models predict essentially identical behavior. For tall cylin-
ders, S < 2, the three Gent models (Equations 1, 2 and 3) converge; but the Horton et al. model
(Equation 5) predicts a somewhat higher apparent modulus. For flat cylinders, S > 9, the
incompressible model (Equation 1) increases without bound with increasing shape factor; the
other models (Equations 2, 3 and 5) all approach the bulk modulus, somewhat more slowly for
Equation 3 than the others. For a very thin disk (S = 300), the apparent moduli from Equations
3 and 5 are 93% and 99% of the bulk modulus, respectively. To some degree, this justifies the
empirical reasoning behind Equation 2. Interestingly, Equations 2 and 5 are equivalent at high
values of the shape factor: to account for bulk volume changes, Horton et al. have applied the
same empirical reasoning as Gent and Lindley.

Experimental assessments of these theoretical predictions have been scarce, and most papers
introducing these models do not compare their predictions to experimental results. Gent and
Lindley11 measured the apparent compressive modulus for a gum natural rubber, and found that
it was in reasonable agreement with Equation 2 for S < 9, although at larger values of S, the meas-
ured EA were approximately half that from Equation 2. The discrepancy was attributed to uncer-
tainty in the bulk modulus. These results are consistent with recent electrostriction measure-
ments,15 wherein a large electric field (ca. 10MV/m) is applied across a thin film (S ≈ 230) of
semi-crystalline poly(vinylidene fluoride) terpolymers. It was found that the apparent modulus is
overestimated by a factor of two by the compressible theories (Equations 2, 3, and 6).
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Mott and Roland16 compressed bonded natural rubber and polybutadiene cylinders, and
determined that the deformation profile was not parabolic. Nevertheless, they found that for
shape factors near unity, the apparent modulus was in good agreement with Equation 1. Fukahori
et al.17 measured the creep of rubber bearings of varying shape factor, and concluded that diffu-
sion of migratory compound ingredients (e.g., plasticizers) governed the mechanical response. 

Other efforts to verify the various theories have been by finite element (FE) calculations.18,19

Morman and Pan20 compared FE results for S = 0.56 over a wide range of strains, and found them
to be in accord with Equation 1 when the compressive strain was less than 5%. Hasshim et al.21

employed a simplifying assumption valid only for filled rubber,22 to model the compression of
filled rubber as a homogeneous deformation. Their approximation was found to work well for
0.5 ≤ S ≤ 8. Yeoh and coworkers13 carried out FE calculations of a ‘typical’ rubber with Poisson’s
ratio of 0.4995 (i.e., B = 333E), finding good agreement with Equation 3. Imbimbo and Luca23

reported agreement of the stress distribution predicted by Equation 1 only for high shape factors,
S > 20. They pointed out that the stress discontinuity at the cylinder edge, which is not captured
by any of the above models, requires special effort to be accounted for in a finite element mesh.
For larger strains, another problem is the difficulty of fitting the strain energy function, limiting
the ability of FE calculations to describe the non-linear mechanical properties of rubber.18

We present herein new experimental results for the apparent compressive modulus of bond-
ed gum rubber disks, measured at low strains in equilibrium. The actual Young’s modulus E was
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FIG. 1. — Comparison of the apparent modulus EA from the various models: incompressible11 (Equation 1);
empirically compressible11 (Equation 2); Gent’s analytical compressible12,13 (Equation 3);

and Horton’s analytical compressible14 (Equation 5).



measured in tension, using strips cut from the same sheets. The bulk modulus, and thereby
Poisson’s ratio, were determined from pressure-volume measurements. These results, along with
some previously published experimental data,11 are compared to the models. 

EXPERIMENTAL

Deproteinized natural rubber (H. A. Astlett Co.) was mixed with 2.0 phr dicumyl peroxide
using a two-roll mill. Curing was carried out by compression molding at 160 C for either 30 min-
utes (3.6 and 1.6 mm thick sheets) or 60 minutes (8.4 mm thick sheets). Disks of varying di-
ameter and strips (12 x 152 mm) were cut from the cured sheets.

The rubber disks were bonded to 19 mm thick steel plates using cyanoacrylate adhesive.
Compressive load-displacement curves were measured with an Instron 4206, fitted with a linear
voltage differential transducer (LVDT). The LVDT was mounted directly on the steel plates,
eliminating the need to correct for the compliance of the load frame. The data were obtained
stepwise in retraction, with a maximum load of 50 kN for the largest diameter sample. The relax-
ation time was less than one minute. To verify that the material was in mechanical equilibrium,
some reversing steps were made with increasing load. Conventional tensile stress-strain meas-
urements were also performed, with the displacement measured using a Wallace optical exten-
someter. The strain rate was 0.0167 s–1 (1.0 min–1), for which the extension and retraction curves
superimposed. Decreasing the strain rate by a factor of ten did not alter the measurement, cor-
roborating the attainment of equilibrium.

Dilatometric measurements employed a Gnomix apparatus.24 The method is based on the
confining fluid technique, with the sample surrounded by mercury. The maximum hydrostatic
pressure of the test is 200 MPa.

RESULTS AND DISCUSSION

BULK MODULUS

Figure 2 shows the pressure P as a function of volume V for nearly adiabatic compression,
from 10 to 200 MPa. The temperature T range is 20.6 to 53.8 C. The data were fit to the Tait
equation,25

(7)

TABLE I
TAIT EQUATION (EQUATION 7) FIT PARAMETERS FROM FIGURE 2

Parameter Value
V0 872.53 mm3

V1 0.61349 mm3/C
V2 –0.0001 mm6/C2

b0 185.24 MPa
b1 0.00443 C–1

where V0, V1, V2, b0, and b1 are material constants. The fits are included in Figure 2, with the Tait
parameters listed in Table I. The bulk modulus, calculated as B = –V ∂P/∂V from the fit to
Equation 7, along with the measured values calculated as B = −V ∆P/∆V from the data, is shown
for ambient temperature (24.3 C) in Figure 3. At zero pressure, B = 1870 MPa.
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The bulk modulus for peroxide cured natural rubber was previously measured by Wood and
Martin26 and Moonan and Tschoegl.27 At ambient pressure, they obtained B = 1946 MPa and
1690 MPa respectively, which bracket the present measurement. We do not expect significant
variation of B with crosslink density, so the differences probably reflect experimental uncertain-
ties.

TENSION

A representative tensile (true) stress versus strain plot is displayed in Figure 4. Young’s mod-
ulus (determined from the initial slope) was approximately 1.5% lower for the retraction data
than for extension. Although this is within the experimental error, the retraction results were
used, since they better reflect mechanical equilibrium.28,29 The variation among samples was less
than 10%. The average Young’s modulus, 1.07 MPa, was used for E in all calculations. 

Poisson’s ratio was then calculated from

(8)

The result, ν = 0.4999, is somewhat closer to incompressible than the value employed by Yeoh
and coworkers13 for finite element calculations of the deformation of bonded rubber sheets. 

ν = −1
2 6
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B
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FIG. 2. — Compressibility of deproteinized natural rubber, crosslinked with 2.0 phr dicumyl peroxide.
The indicated temperatures are averaged over each compression, with a variation of ±0.5 C.

The lines represent the Tait equation25 (Equation 7). The sample mass was 0.8521 g.



BONDED COMPRESSION

The measured true stress is plotted in Figure 5 for the bonded disks in compression. The
curves are essentially linear for compressive strains less than 5%. The curves were fit to parabo-
las, and the apparent moduli EA taken from the derivatives at zero strain. Figure 6 compares this
experimental data to the theories. For clarity, the empirical compressible theory (Equation 2) has
been omitted, since it predicts the same behavior as the incompressible theory (Equation 1) at
lower values of S, and as the Horton et al. theory (Equation 5) at higher S. At low values of S,
the data agrees with the theories within experimental error. For S > 3, the data consistently fall
below all the calculated curves. In this range, the theories overestimate the modulus by roughly
a factor of two.

For comparison, data taken from Gent and Lindley11 are displayed in Figure 7. Again, the
lines show the incompressible model (Equation 1), Gent’s analytical model (Equation 3), and the
Horton et al. model (Equation 5). For the latter two curves, the bulk modulus of the sulfur-cured
gum natural rubber compound was assumed to be 1960 MPa, as done originally by Gent and
Lindley. This is 5% larger than the present measurement. Again, at higher shape factors, the ex-
perimental data fall below all the theoretical curves, by approximately a factor of two. However,
for low and intermediate shape factors, S < 9, Equation 5 describes the data quite well.
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FIG. 3. — Pressure-dependent bulk modulus at 24.3 C, using B = −V ∆P/∆V, calculated from
the data in Figure 2. The line is the derivative of the fitted Tait equation.
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FIG. 4. — True stress as a function of strain, measured in tension. The line represents a second-order polynomial.

FIG. 5. — Apparent true stress as a function of compressive strain for bonded rubber
having the indicated shape factors. The lines are second-order polynomial fits.
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FIG. 6. — Comparison of the experimental data measured herein to the various models.

FIG. 7. — Comparison of the data from Gent and Lindley11 to the various models.
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SOURCES OF ERROR

The disagreement between the theories and experimental data at high shape factors (i.e., S > 9)
may be due to the high shear strains near the cylinder edge, which can give rise to additional
internal stresses that are unaccounted for by the models. The Gent et al. theory30 predicts the
shear strain along the bonded surface to be 

(9)

where e is the compressive strain, r is radial position, and a the sample radius. For a shape fac-
tor of 12.95 and a 5% compressive strain, γ at the sample edge is predicted to be 3.89. This is
beyond the bounds for linear elastic behavior in rubber; moreover, in this range natural rubber
can strain-crystallize.31-33 Although this estimate cannot be correct at the edge, since a free sur-
face cannot apply shear tractions, measurements have shown good agreement over most of the
bonded surface.30 Since finite element calculations also ignore this discontinuity,13 their agree-
ment with the models does not serve as a verification thereof. 

Another potential source of error is the 0.1mm variation in thickness of the rubber sheet,
which introduces some uncertainty into the compressive strain. This error will increase as S in-
creases. Concerning the bonding of the rubber sheets, there was no indication of failure (e.g.,
cracks or delamination) in either the rubber or the adhesive bond, nor was there hysteresis in the
stress-strain curve when the strain increments were reversed.

CONCLUDING REMARKS

The Horton et al. model (Equation 5) offers the best accuracy at the lowest shape factors.
However, the incompressible solution (Equation 1) is simple and within 11% of the Horton et al.
model for S ≤ 2. At intermediate shape factors (2 > S > 9), where all the models agree, the Gent
and Lindley data are within the experimental uncertainty of the theoretical curves. The present
measurements, however, fall below the predictions. At large shape factors (S ≥ 9), none of the
calculations satisfactorily describe the experimental results. At intermediate shape factors, the
cause of the discrepancy between the present measurements and the Gent and Lindley data is un-
clear. At high shape factors, however, the two experiments are in accord, and also agree with ex-
perimental results from electrostriction measurements.15 Of course, the vinylidene fluoride films
used in the latter are semi-crystalline, and substantially less ‘incompressible’ than the present
gum elastomer. Nevertheless, the failure of existing models at high shape factor indicates a need
for further analytical developments.
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