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INTRODUCTION

The process of return of a deformed polymeric network to a state of ease is
usually associated with a reduced level of stresses relative to the magnitudes
observed during extension'. Three mechanisms are known to give rise to this
hysteresis. Deformation can effect irreversible alterations of structure, such as
fracture of network chains®® or their detachment from filler particles?, that
cause a permanent increase in network compliance. Large deformation can also
bring about extended chain crystallization which, by decreasing the number of
elastically effective network strands and diminishing the microscopic strain of
the remaining amorphous material, will reduce the stress associated with a
given macroscopic strain amplitude®®. Such crystallinity can persist even after
removal of the external deformation because of the greater stability of crys-
tallites formed with a paucity of crystal stem reentry sites. A third origin of
strain softening arises from retardation in the response of network chains due
to their interaction with the surrounding viscous medium.

The stresses observed during retraction have long been considered to be
lower in magnitude than can be accounted for from the aforementioned consid-
erations. This phenomenon is referred to as the Mullins effect (although the
term is commonly applied to general stress softening in filled rubbers). Nonaffine
displacement of the network junctions has been proposed as the origin of the
purportedly anomalous behavior!”-?, but corroboration of this assertion is lack-
ing. In the absence of quantitative assessment of the known contributions, par-
ticularly viscoelasticity, to the hysteresis, the origin and even the existence of
Mullins softening remain to be demonstrated. The study described herein was
directed toward this end.

BACKGROUND
DISSIPATION OF MECHANICAL ENERGY

The equilibrium response of an elastomeric material represents only a part
of the overall mechanical behavior. The stress observed upon deformation typ-
ically includes a significant contribution from dissipative processes. These vis-
cous effects can be rigorously quantified only by extraordinary methods. Ex-
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perimental characterization requires exceedingly fast displacement and obser-
vation of test specimens due to the rapid initial decay of stress. Despite this
rapid initial dissipation, viscous contributions can persist with diminished mag-
nitude for time periods extending many hours beyond imposition of the defor-
mation. The simplest models of viscoelasticity assume a Newtonian (i.e., in-
variant) viscosity, and therefore exhibit exponential stress relaxation. An in-
finite sum of exponentials is sometimes employed to fit relaxation data from
polymeric materials, in consideration of the availability of a range of motions
and corresponding relaxation processes. The long-time relaxation in crosslinked
rubber is governed by the release of entanglement constraints on dangling net-
work chains'™!'!. Since reptation of the network strands is suppressed, a principle
release mechanism is fluctuations in the contour length. The dangling chain
retracts and reemerges from the tube of entanglements and thereby can assume
arelaxed configuration. The magnitude of the relaxing stress reflects the fraction
of the chain segment remaining in the tube. An empirical stress-relaxation func-
tion, in which the stress has an inverse power-law dependence on time, has
enjoyed wide success'®'?, The form of this phenomenological relaxation function
can be obtained by summing the diffusion times of the dangling chains on a
network. These times are strongly dependent on the chain lengths, whose dis-
tribution in the network are a result of random crosslinking of the precursor
chains’.

In general, the magnitude of the dissipative stress depends not only on the
nature of the material, but also on the details of the deformation process. The
problem of analyzing viscoelastic mechanical behavior is greatly facilitated when
the material exhibits linearity, which is strictly defined as the condition whereby
stress and strain remain directly proportional to one another, and time invari-
ance of the mechanical response is observed. The stress resulting from an applied
strain, ¢, is then described by the Boltzmann equation

a(t) = f FE(t - w)de(u)/duldu, (1)

where E(t) is the stress-relaxation function. All polymeric materials obey this
equation at sufficiently small strains. Limits for linearity are reputed to extend
over a wider range for crosslinked elastomers than is realized for most mate-
rials'*; however, strict adherence to Equation (1) is not necessarily made ap-
parent from a single experiment'®. Beyond the maximum strain for which the
equation of linear viscoelasticity is valid, application of an integral constitutive
equation can be attempted'*'®,

t
a(t) = f {Elt — u, (1 — w)]}[de(u)/duldu. 2)

0
The utility of this integral is limited by the strain dependence in the kernel. If
the relaxation spectrum underlying the function E(¢) is independent of strain,

the effects of time and of strain are uncoupled. Such time invariance permits
the simplification,

a(t) = J; E(t —w)g(e)lde(u)/duldu. 3)
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The strain in a crosslinked rubber is defined in terms of the stretch ratio A,
as suggested by the statistical theories of rubber elasticity'’,

e=f(A)=A— A2 (4)

The presence of a damping function, g(e), in Equation (3) reflects the fact that
the material response does not remain proportional to the imposed deformation.
This may be due to nonaffine motion of the polymer chains as the molecular
deformation slips with respect to the motion of the continuum. Although the
network motion may in fact not be affine even at very low strains, the slippage
increases with extensional deformation due to increasing reduction of the steric
constraints on the thermal motion of chains along the extension direction. The
damping function is thus a decreasing function of the extent of deformation.
For elastomeric networks, the form of the damping function consistent with
experiments in uniaxial extension is obtained from the Mooney-Rivlin relation'”,

g(e) = 1 + (C/CHN, )

which by custom is normalized to unity at ¢ = (. The elastic constant C, is a
measure of the connectivity of network strands, thus

E(t=o)=20C,. (6)

The magnitude of the C, term has often been associated with stress-relaxation
behavior, consonant with the belief that this term reflects the contribution of
trapped entanglements to the equilibrium modulus'®. Attainment of equilibrium
is inhibited by entanglements of the branched-chain segments in the network.
One consequence of failure to allow for the completion of relaxation processes
is obtaining an ostensibly larger value of C,'®, although even under equilibrium

conditions, C, usually is nonnegligible!'”.

TENSILE RETRACTION

The hysteresis engendered in deformed networks by crystallization or ir-
reversible changes in network structure is well known and at least qualitatively
understood; however, even in the absence of these effects, the reduction in stress
during the tensile retraction of a rubbery network is reputed to exceed any
decrease attributable to viscoelasticity' =, This anomalous hysteresis is known
as the Mullins effect, although the term is commonly employed to refer to the
large-strain softening of carbon-black-reinforced elastomers. Actually, while
stress softening effects specific to the interaction of a polymer with filler may
become significant at large extensions, the hysteresis in filler-reinforced rubbers
is found to equal that observed in pure rubbers when comparisons are made at
equivalent degrees of microscopic strain®.

Whenever the relaxation time of a material is comparable to the time scale
of the deformation, the stresses during retraction will be less than during ex-
tension. This viscoelastic softening is demonstrated for a linear material by
employing Equation (1) to calculate the tensile-retraction response of a three
parameter Maxwell solid'®. This consists of two parallel Hookean springs, one
of which is in series with a Newtonian dashpot, yielding



ORIGIN OF MULLINS EFFECT 883

a(t) =FE, + F, exp(—t/7) (7

where E; and r represent the moduli and relaxation time of the model respec-
tively. Calculated tensile retraction curves are displayed in Figure 1 for three
materials, all having equivalent equilibrium moduli but differing in their relax-
ation times. These data illustrate that strain softening can occur during the
deformation of a linear viscoelastic material, with the extent of the hysteresis
depending upon the relaxation time.

The Mullins effect refers to anomalous softening; that is, a reversible but
nonequilibrium deformation will be accompanied by a level hysteresis exceeding
that expected from linear viscoelasticity. Nonaffine network motion is reported
to underlie the Mullins effect!” ?, but this has never been demonstrated.

EXPERIMENTAL

Elastomers with a variety of network types were employed. The sample
designations, test dimensions, and description of their structure and elastic
behavior can be found in the preceding paper'”. The nonequilibrium deformation
experiments were conducted at constant crosshead velocity and consisted of
uniaxial extension of the test specimens to various maximum strains, followed
by immediate retraction at the same rate to zero load. The repeatability of the
retraction measurements was scrutinized by repeating experiments on the same
test specimen (several days later to allow complete relaxation) and verifying

2.5 . T . . . T

STRESS

£ C2)

Fi6. 1.—The reversing stress-strain curve for three Maxwell solids having equivalent equilibrium
moduli. The ratio of the respective relaxation time of each solid divided by the extensional deformation
rate is indicated.



884 RUBBER CHEMISTRY AND TECHNOLOGY VoL. 62

that identical results were obtained. Such repeatability demonstrates that over
the course of the extension no significant chain rupture had transpired.

Room-temperature stress relaxation was measured using a Imass Corp. Dy-
nastat Mark Il instrument. Following imposition of an instantancous deformation
(zero to full displacement in less than 70 ms), the stress was typically monitored
over a time period of at least 10 ks. Due to sample geometry constraints and in
order to minimize the displacement required to achieve measurable loads, planar
extension (which is also known as pure shear in reference to the absence of
rotation of the principal strain axes) was the approximate geometry employed
for the stress-relaxation measurements. Specimen widths were typically more
than 3 times their length. The time dependence of a network’s response to a
step strain is expected to be equivalent in planar extension, for which the prin-
cipal stretch ratios are given by

MNEXL M= (8)
to that in uniaxial extension, for which
Ae= A= N0 (9)

The responses to steady state or other more complicated deformations might
however differ for these types of deformation. Ten stress measurements per
decade of time were obtained. The numerical relaxation data were used directly,
with double logarithmic interpolation employed between data points.

RESULTS AND DISCUSSION

Representative tensile-retraction measurements for the rubbers are displayed
in Figures 2-7. The magnitude of the strain softening, as reflected for example
by the ratio of strain energy during extension to that during retraction (referred
to as the experimental hysteresis ratio in Table I), does not correlate with the
magnitude of the elastic constants'? either C, or the ratio ',/C,. It was seen in
Figure 1 that the magnitude of strain softening depends upon the relaxation
characteristics of the material; accordingly, it is necessary to quantify the mag-
nitude expected for viscoelastically derived hysteresis in order to assess its
contribution to the total energy dissipation.

DEFORMATION DEPENDENCE OF THE RELAXATION SPECTRUM

Previously reported attempts to separate out the contribution of viscoelas-
ticity during tensile retraction of crosslinked rubbers relied on assuming their
adherence to strict linear viscoelastic behavior®?”. When strict linearity is
maintained, the stress after a time period t — ¢,.. since reversal of the strain
can be expressed as

o(t) = etR(t) — 2e(t — t,.. )R(t ~ Ly ). (10)

where ¢ is the (constant) strain rate and R(t) contains the time dependence of
the stress. With this approach, the validity of the assumption of linear visco-
elastic behavior is not directly assessed. No comparison is made between the
calculated and experimental extension data, because the latter are used directly
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FiG. 2.—The reversing stress-strain data measured for the SBR05 (+++), along with the curve
calculated assuming reversible damping. The nominal strain rate in this and Figures 3 through 7 was
0.083 sec™!. The calculation employed the measured E(t), with £(0) serving as the sole fitting parameter.
The strain dependence of E(oo0) is obtained from Reference 17.
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FiG. 3.—The reversing stress-strain data measured for the SBR05-S (+++),
along with the curve calculated assuming reversible damping.
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Fi6. 4.——The reversing stress-strain data measured for the SBR10 (+ +~),
along with the curve calculated assuming reversible damping.
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Fi6. 5.—The reversing stress—strain data measured for the SBR10O-S(+ 1+ +),
along with the curve calculated assuming reversible damping.
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FiG. 6.—The reversing stress-strain data measured for the SBR-E (+++),
along with the curve calculated assuming reversible damping.
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FiG. 7.—The reversing stress—strain data measured for the NR (++ t ), along
with the curve calculated assuming reversible damping.
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in the calculation of the retraction stresses. Divergence between theory and
experiment in the results for retraction may therefore be an artifact of deviations
from strict linearity. Inferences drawn from such a procedure®?° are conse-
quently of uncertain value until such linearity is demonstrated.

In fact, the nonlinearity of the elastic response in the present rubbers'”
clearly indicates that the Boltzmann superposition principle is inapplicable for
these networks at A > 1. If time invariance is maintained, however, recourse
can be made to the superposition integral [Equation (3)] in attempting to ascertain
the contribution of viscoelastic relaxation to the tensile-retraction data. Time
invariance requires that the stress-relaxation function change by only a mul-
tiplicative constant when measured at different strains. The stress-relaxation
function was characterized for the various materials. The faster relaxing rubbers
were those with the looser network structure; that is, the presence of diluent
or a lower density of crosslinks effected more rapid dissipation of stress. Of
greater interest herein, however, is the dependence of the relaxation on strain.

Displayed in Figures 8 and 9 are representative stress relaxation results for
two of the networks subjected to various elongations. Over the duration of
these measurements, the stresses at various strains are seen to remain parallel
to one another when the data are plotted in logarithmic form. This same pro-
portionality is observed in Figure 10 between the stress relaxation after planar
extension and after uniaxial extension. In fact, the only deviation from apparent.
constancy in the form of E(¢) for any of the rubbers was measured for the NR
at very high elongations (see Figure 11). This deviation is not a reflection of
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F1G. 8.—The stress relaxation measured for the NR after imposition of planar
extensional strain of the indicated A.
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Fi6. 9.-—The stress relaxation measured for the SBR10-S after imposition
of planar extensional strain of the indicated A.
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Fi16. 10. —-The stress relaxation measured for the SBR05-S in uniaxial extension
(A = 1.25) compared to that in planar extension (A = 1.20).
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FiG. 11.-—The time period required for cessation of stress relaxation in NR as a function of the
uniaxial extension ratio. The increases at the higher strains coincide with deviations in the strain
dependence of the elastic modulus from the Mooney-Rivlin equation.

alterations in the viscoelastic relaxation spectrum per se, but is due to the onset
of orientational crystallization. The crystallization transpires over a time scale
longer than the longest relaxation time, so that the time required for invariance
of the stress to be observed increases for strains sufficient to induce crystalli-
zation. At the particular crosslink density of the NR network, orientational
crystallization is induced only at extension ratios greater than about 5. From
the parallelism observed over the strain range of interest, time invariant me-
chanical behavior is indicated. The factorization of time and strain effects is
justified herein.

MULLINS SOFTENING

Using the time dependence of the stress relaxation taken from the experi-
mentally measured relaxation functions, stress—strain data were calculated for
the various networks using Equation (3). The scale factor for the E(f) served
as the sole fitting parameter and these are listed in Table I as K(0). For the
damping function, g(¢), Equation (5) was employed, with values for the elastic
constants taken from Reference 17. These computations are summarized in Table
I, with representative results superimposed on the experimental data in Figures
2 through 7. It is seen that while the calculations are, as expected, in good
agreement with the experimental data during extension, the retraction stresses
diverge significantly from the computed values. This discrepancy between the
curves during retraction is a direct measure of the hysteresis in excess of linear
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TaBLE ]

EXTENSION—-RETRACTION RESULTS

Hysteresis ratio, %

Sample Amax ¢, sec™! Ein, MJ/m? @ EW) exp. Eq. (3) Mullins®
SBROS 1.54 83 x10°% 0.092 1.56 16 11 5
SBR0O5 1.79 83 x 10 ¢ 0.165 1.56 21 10 11
SBRO5 2.04 8.3 x 1072 0.183 1.56 23 15 8
SBRO5 2.52 8.3 x 10 2 0.467 1.56 26 14 12
SBR05 2.03 83x10™* 0.183 0.81 18 3 15
SBR05-S 2.04 83x10° 0.127 1.12 19 9 10
SBR10 1.54 8.3 X 1072 0.113 0.88 9 4 5
SBR10 2.05 8.3 %10 2 0.331 0.88 16 5 11
SBR10 2.64 8.3 X 1072 0.634 0.88 18 11 7
SBR10 2.03 8.3 x 10 0.275 0.81 11 3 7
SBR10-S 2.04 83 x 10 2 0.195 0.79 11 6 5
SBR-E 2.09 8.3 x 1072 0.261 0.53 31 11 20
SBR-E 2.02 8.3 X 107* 0.172 0.63 23 7 16
NR 2.04 83x10* 0.251 0.44 15 8 7

“ The area under the extensional stress—strain curve.
® The percent experimental energy dissipation in excess of that calculated for linear
relaxation.

viscoelastic losses. The extent of this anomalous strain softening (i.¢, the Mullins
effect) is listed in Table I for the SBR networks. These results are expressed in
terms of the hysteresis ratio, defined as the irrecoverable strain energy divided
by the energy expanded during extension.

Even though their elastic response encompasses a range of behaviors!”, the
various rubbers exhibit roughly similar Mullins softening. As the reversal strain
is increased, the fraction of the input mechanical energy that is dissipated, as
well as the contribution to the hysteresis ratio from linear viscoelastic relaxation,
increases in all cases. On the other hand, the magnitude of the Mullins effect
itself (as gauged from the difference of these two quantities) is found to have
no significant dependence on the reversal strain, at least over this limited range.

The observation of comparable Mullins softening in all the networks confutes
the assertion that the Mullins effect is due to nonaffine junction motion!”-°, The
most affinely deforming of these rubbers, the SBR10, displays about the same
relative Mullins softening as does the SBR05-S, which, due to its lower crosslink
density and the presence of diluent, behaves much more like a phantom net-
work'”. It is evident that Mullins softening is apparently unrelated to the degree
to which the elastic displacement of individual network junctions parallels the
macroscopic strain.

The stresses during return from uniaxial extension are overpredicted when
only linear relaxation and the nonlinear elastic modulus are considered. It is
evident that another relaxation mechanism is operative. It is this relaxation
which underlies the Mullins effect.
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IRREVERSIBILITY OF THE DAMPING

Similar to the Mullins softening of rubber, in reversing deformations of poly-
meric liquids, it is found that the stresses after reversal of the strain are less
than the values calculated assuming linear viscoelasticity'®. The motion of a
highly entangled polymer chain is inhibited by restrictions imposed by other
chains. The group of conformations consistent with these topological constraints
defines a so-called primitive path; a primitive chain represents the real chain
without its small-scale fluctuations!!. In an uncrosslinked polymer melt, relax-
ation after the application of a strain will proceed via two processes. The first
involves rapid retraction of the primitive chain back to its original contour
length. The second relaxation process consists of disengagement (primarily via
reptation for linear chains) from the deformed tube of constraints. Only this
slower process, however, is usually included in the measured linear viscoelastic
relaxation spectrum!''¢. The differential modulus of polymeric melts decreases
over the course of a steady-state deformation, reflecting slippage of the chain
molecules with respect to the macroscopic continuum. This softening in poly-
meric fluids has its origin in different physical phenomena than the hysteresis
effects described herein for rubber networks; nevertheless, it has been similarly
accounted for in the constitutive equation by introduction of a damping function.
The mechanism underlying the attenuation of the damping function in polymeric
fluids is not reversible; that is, as the strain is returned to zero, the damping
function does not increase back to unity!®?'. Introduction of irreversibility into
the damping function reduces the relative magnitude of the calculated stresses
during retraction, in qualitative agreement with experiments. The origin of this
irreversibility is the dissipation of stress due to relaxation processes not included
in the linear relaxation spectrum, in particular the retraction of the primitive
chain'®?2, The chain ends assume a more random conformation upon contraction,
and the consequent loss of microscopic deformation reduces the strain energy.
These losses occur sufficiently fast that they can be neglected in the constitutive
description. However, neglect of these relaxation mechanisms causes overes-
timation of the stress in calculations for a reversing strain history'®%, In rec-
ognition of the failure of superposition integrals with separable time and (non-
linear) strain functions to describe reversing strains, it has been proposed that,
after a strain reversal, g(e) assumes the minimum value it had attained during
the extension portion of the strain history?'. This implies that the structure
breakdown (e.g., disentanglement of the chain molecules in a polymeric fluid)
is not recovered upon strain reversal.

Distinct differences exist in the nature of the phenomena represented by the
damping function for networks with that for uncrosslinked polymers. Nev-
ertheless, the Mullins effect in rubber may have an origin similar to that un-
derlying the irreversibility of the damping function for polymeric liquids. In a
network, the tethered chains are incapable of reptation. Dangling chain ends
primarily equilibrate by fluctuation in their contour length. Prior to this, how-
ever, retraction of their primitive path contour lengths will transpire. In ad-
dition, upon deformation, the segments of a chain are initially stretched or
compressed along their primitive path depending on their particular instanta-
neous direction. Although these local imbalances are rapidly adjusted, they
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cause a variation in force along the chain. Due to the rapid nature of this ad-
Jjustment and of the contraction of the primitive path, these dissipative processes
are omitted from linear relaxation behavior as exemplified in Figures 9-11. A
consequence of this omission is the failure of Equations (2) and (3) to describe
the stresses measured during tensile retraction of rubber. This omission is ac-
cordingly seen to be the origin of the Mullins effect.

Tensile retraction curves for the rubbery networks were calculated employing
an irreversible damping function. It was assumed that, while the damping func-
tion during extension is given by Equation (5), after change in sign of the strain,

9(6) = (1 + (C2/C1)Mmirs (11)

where \,,.. is the extension ratio upon reversal of the strain. The resulting
recoverable strain energy calculated for the networks is displayed in Table I1
for various values of A,,,. It can be seen that the assumption of an irreversibility
significantly improves the agreement between experimental and calculated re-
traction results; however, the description of the experimental behavior for all
samples under all deformations conditions is not quantitative. The form assumed
for the irreversibility was empirical. Better agreement with experimental data
could be obtained by adjusting the nature of the irreversibility of the damping
function. In fact, a fundamental difficulty exists with the form of irreversibility
given in Equation (11). The problem is illustrated in Figure 12, in which the
computed retraction cycle for complete relaxation (that is, a strain history con-
ducted infinitely slowly) is shown. This calculated stress-strain curve, which,
when measured experimentally, corresponds to equilibrium results obtained in
a step-wise fashion, diverges from the elastic results. Although not necessarily

TabLE 11

REVERSIBLE AND IRREVERSIBLE [DAMPING

Recoverable strain energy, MJ per m*

Sample Apmax €, sec ! Measured Equation (5) Equation (11)
SBRO5 1.654 8.3 x 107 077 .082 073
SBRO5 1.79 83x10°? 130 .149 128
SBRO5 2.04 8.3 X 1072 .205 227 191
SBRO5 2.52 83x10° .344 402 327
SBRO5S 2.03 8.3 x 10! 150 178 154
SBR05-S 2.04 83x10°? 103 115 102
SBR10 1.64 8.3 x 1072 103 .108 .098
SBR10 2.05 83x10? 279 314 273
SBR10 2.54 8.3 X 1072 519 .562 478
SBR10 2.03 83 x10™ 246 .266 .236
SBR10-S 2.04 8.3 x 10 174 .184 .166
NR 1.54 83x10°? 075 .087 .080
NR 1.80 8.3 x 1072 138 .165 .149
NR 2.04 8.3 X 1072 241 .250 223

NR 2.54 83x10°% 413 .459 .402
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F16. 12.—The stress during tensile retraction of the SBR10-S calculated assuming complete relaxation
and irreversible damping, in comparison to the measured elastic equilibrium results.

the case with polymeric liquids, sufficiently slow deformation of networks is
fully reversible, at least in the absence of chain rupture. The connectivity of
the network requires complete strain recovery, since network chains and their
Jjunctions can not irreversibly change their relative positions. The fundamental
difference between the behavior of liquids and networks during reversing strain
histories is that the structure of the latter is not altered during a strain cycle.
The eventual complete disappearance of any set reflects this fact!”.

SUMMARY

The Mullins effect refers to the dissipation in crosslinked rubber of mechan-
ical energy beyond that due to linear relaxation processes or irreversible struc-
tural changes. Physically, Mullins softening probably arises from adjustment
of local imbalances in segment density and from contraction of the primitive
path of network chain ends. The resulting more random chain configuration
contributes to the relaxation of the stress, but at a sufficiently rapid rate that
it is omitted from the experimentally measured linear relaxation spectrum. This
omission is made apparent upon reversal of the applied strain. The mechanism
underlying the hysteresis can be modeled empirically by the introduction of
irreversibility into the damping function. Although the Mullins effect is a re-
flection of nonaffine network motion during deformation of rubber, it is inde-
pendent of the extent to which the junctions of the network are affinely displaced
at elastic equilibrium. Randomly crosslinked networks of widely varying struc-
ture exhibited comparable degrees of Mullins softening. Corroboration that the
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network chain ends are a major source of Mullins softening could be obtained
by a similar study using end-linked networks. Such experiments on end-linked
polytetrahydrofuran rubber are currently in progress.
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