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Various predictions of the coupling model (CM) are known to be in agreement with observations of relaxation
phenomena in polymers. However, as shown herein, when applied to the terminal relaxation, the model deviates
from experimental data for monodisperse polymers; to wit the shape of the terminal relaxation spectrum does not
conform to the CM equation. Nevertheless, the main premise of the model—that the dynamics transition from
intermolecularly uncorrelated to entanglement-coupled relaxation at a temperature-independent crossover time—
is supported by the data. Specifically, it is shown that the continuity condition of the model, relating the
magnitudes of the non-cooperative and cooperative relaxation times, can be determined numerically to yield
predictions for the molecular weight and temperature dependencies of the terminal viscosity in agreement with
experiment. Previously the derivation of this continuity relation relied on the assumption of a specific form for the
relaxation function’s shape.

The discrepancy concerning the shape of the relaxation function is apparently due to alleviation of the
entanglement constraints, with consequent time-dependence of the coupling parameter. Previously, the coupling
parameter has been regarded as strictly constant; however, at times approaching and longer than the terminal
relaxation time, mitigation of the lateral constraints causes a decrease in the degree of intermolecular
cooperativity, and hence in the coupling strength. The deviation of experimental spectra from the model’s
prediction is likely due to the neglect of this fluctuation in the severity of entanglements. Published by Elsevier

Science Ltd.
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INTRODUCTION

Tobolsky and coworkers' used the empirical Kohtrausch

equation2
t\B
Glr) = GRexp [— (%) ] M

to describe the terminal relaxation behaviour of polymers.
In this relation, also known as the stretched-exponential
function, GY, is the rubbery plateau modulus and 7* is the
relaxation time. Tobolsky found that the shape parameter 8
varied with molecular weight, attributing it to molecular
weight polydispersityl.

While Tobolsky’s approach was purely empirical, there is
a theoretical description of relaxation, the coupling model
(CM), which can lead to equation (1). According to the
CM>*  which focuses on the consequences of inter-
molecular cooperativity, at short times the dynamics are
unaffected by intermolecular constraints; however, at some
temperature 1nsensmve crossover time, t., the chain motions
(e.g- Rouse modes’) become mutually inhibited through
entanglement interactions. By describing the effect of the
entanglement constraints in a particular fashion, the form of
equation (1) is obtained for the relaxation function® (with 8
replaced by 1 — n, where n is the coupling parameter). The
coupling parameter is a measure of the strength of the
intermolecular interactions; larger n indicates stronger
constraints on the chain motions. Since the nature of the
entanglements constraint is largely independent of chemical

* To whom correspondence should be addressed

structure®, the coupling parameter for terminal relaxation
should be essentially the same for all polymers®.

The CM is based on general physical principles®* and as
such is also applicable to the local segmental dynamics. In
this case there is a direct connection between local chemical
structure and the strength of the intermolecular cooperativ-
ity’, as reflected in the magnitude of n. For local segmental
motion, the ideas underlying the CM are directly supported
by quasielastic neutron scattering experiments®’. These
neutron experiments 89 as well as molecular dynamics
simulation data®'°, indicate . to have a magnitude of a few
picoseconds for local segmental relaxation. Since the
terminal relaxation involves motion over longer length
scales, we expect . to be larger than the value associated
with segmental relaxation.

The relaxation time, 7*, depends both on the local friction
and on the coupling parameter. As a consequence of
continuity of the relaxation functions (intermolecularly non-
cooperative for + < ¢, and entanglement constrained for
t > t) at t = f. the terminal relaxation time can be
expressed as™

7= (8 ") 2)

where 7 is the relaxation time for the longest Rouse mode.
This form for the continuity condition assumes the non-
cooperative relaxation (t < f.) proceeds via exponential
decay Even when this is not the case, an exponentlal func-
tion is often adequate to over a few decades of time'' Note
that while various relaxation models invoke equation (O3,

equation (2) is unique to the coupling model. All previous
applications of the coupling model to the terminal relaxation
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have assumed equation (1); this assumption will be tested
herein. However, the essence of the coupling model, the
continuity condition [one form of which is equation (2)],
is by no means contingent on the validity of equation (1).

This relationship between 7* and 7y, together with
equation (1), have been used to address various long time
(t > t.) properties, including: (i) the correlation between the
temperature dependence of 7* and the shape of the
relaxation spe«::trum47 13; (ii) the correlatlon of the shape
of the spectrum with chemlcal structure*~'7; (iii) the
anomalous plasticization of mixtures; (iv) the breakdown of
time— —temperature superpositioning in the softening zone'®;
v) dlfferences in activation energles for self-diffusion and
viscosity*; and (vi) the difference in temperature depen-
dencies of branched and linear polymers'®?°, The latter
three phenomena involve application of the CM to terminal
relaxation behaviour.

The low frequency dynamics of unentangled polymers
are well described by the Rouse model®. The coupling
model assumes that the Rouse model remains valid even for
high molecular weight polymers when 7 < ¢, since
entanglements have not yet begun to interfere with the
chain motion. Thus, the non-cooperative relaxation times of
the coupling model are just the Rouse relaxation times

M to
o — s
70,p KT r=12,3.) 3)
where {; is the monomeric friction coefficient and My, the
molecular weight.

At longer times, entanglements exert their influence,
whereby the 7, become the longer relaxation times given
by equation (2). In application of the CM, only the longest
(p = 1) Rouse relaxation time is considered, based on the
idea that the slowest mode makes the dominant contribution
to the terminal behaviour’!. Substituting the longest Rouse
relaxation time into equation (1), the terminal viscosity is
calculated as

Gy T[1/(1 = m)]
1-n
where I' denotes the gamma function (we omit the subscript
on 7%, noting that it is the relaxation time associated with the

p = 1 Rouse mode). Similarly, the steady-state shear
compliance is given by

m=mem= @)

I'[2/(1 —n)l
GYT?[(1/(1 — n)]
These relationships for », and J?, which do not rely on
equation (2), were previously derived by Tobolsky'. From

equations (2) and (3), the CM’s prediction for the molecular
weight dependence of the terminal viscosity is

Mg o 7 o MY ©)
If the viscosity exhibits an Arrhenius temperature
dependence with an activation energy E; then
k Ea
Y -n
where E, is a primitive (unaffected by intermolecular inter-
action) activation energy. In utilizing equations (4)—(7), the

value of the coupling parameter is invariably determined by
fitting the loss modulus

J= 5)

@)

G'(w)=w .[0 G(Hcos(wt) dt 8)
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with G(f) given by equation (1). Efficient algorithms for
transforming the Kohlrausch equatlon into the frequency
domain have been published??.

EXPERIMENTAL

Linear polystyrene (lot no. 50124) was obtained from the
Pressure Chemical Co. The weight average molecular
weight of the polymer was 233000 with a polydispersity
of 1.06. Dynamic mechanical data were obtained with a
Bohlin VOR rheometer using a parallel plate geometry.
Sample radii and gaps were typically 13.5 and 2 mm,
respectively. The dynamic shear modulus was usually
measured from 40 Hz down to as low as 1.5 X 107* Hz.
Values of the termmal viscosity, 79, and the steady-state
shear compliance, Je, were obtained as’

no= lim 2 ©)
w—0 w
_ L i G
R= 2 im = (10)

RESULTS AND DISCUSSION

Polybutadiene

Rendell ez al.*® interpreted the terminal relaxation data of
Colby et al.** for 1,4-polybutadiene (PBD) in terms of the
coupling model, deducing n to be in the range of 0.40-0.43.
More recently, terminal relaxation data for another PBD
series was similarly analysed by Palade et al.”® who
obtained n = 0.41. In both these studies, the values reported
for the coupling parameter were guided by the expectation
that equation (6) of the CM should agree with the
known molecular weight dependence of the terminal
viscosity. In order to satisfy the My dependence
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Figure 1 Terminal loss modulus for PBD of My = 925000 (O)*°. The
solid line is the fit of equations (1) and (8), which yields n (=1 — ) =
0.21. The dashed line towards higher frequency is a power-law
extrapolation [equation (12)] of the terminal dispersion
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established experimentally for polybutadien626, n must
equal 0.41.

Displayed in Figure 1 is the dynamic mechanical data of
Colby er al** for PBD of My = 925000. Higher in
molecular weight than the PBD’s analysed previously**
this polymer’s terminal relaxation should be better resolved
(longer rubbery plateau) from any interfering contributions
from higher frequency motions. This is in keeping with
Graessley and coworkers’s suggestion®*?” of a ‘limiting
case’ at sufficiently high molecular weight, whereby the
terminal dispersion becomes invariant in shape.

The dispersion in Figure I does not conform well to the
stretched exponential function on the high frequency side of
the peak. To the extent that equation (1) does not provide an
accurate description of the terminal relaxation function, the
determination of n is somewhat arbitrary. We focus on
lower frequencies, assuming that contributions other than
the terminal relaxation might be responsible for the
discrepancies at higher frequency, and obtain a best-fit n
= 0.21. This is much less than the value necessary to give
the molecular weight dependence of 5, determined by
experiment. Although equations (1) and (8) with n = 0.21
(8 = 0.79) significantly underestimate the intensity of the
peak on the high frequency side, no better fit to the
experimental data can be achieved using larger values for
the coupling parameter. We obtain the same result (not
shown) from an analysis of Roover’s data for 760000
molecular weight PBD?; the best fit to the loss modulus
dispersion yields a value of 0.21 for the coupling parameter.

If it is assumed that equation (1) describes the terminal
dispersion, then equations (4) and (5) can be used to
calculate the terminal viscosity and steady-state shear
compliance, respectively. In the past, agreement of
calculated values with experimental determinations of
these quantities has been taken as corroboration of the
CM. In Table 1 we list the plateau modulus, terminal
viscosity and steady-state compliance reported by Colby er
al** for the polybutadiene of Figure 1. We calculate the
plateau modulus by integration of the fitted Kohlrausch
function®

0 2 i "
GN=;J wG (w) dln w an

which yields G% =0.86 MPa. Using this value, we calculate
from equations (4) and (5) values for 7, and J. which are
consistent with the experimental results (Table I). Such
agreement ostensibly confirms the adequacy of equations
(1) and (8) for describing the termmal relaxation. In reality,
any relaxation function having an w™ ' dependence for G” at
low frequencies will yield correct values for i, and JO The
shape of the fitting function at frequencies higher than the
maximum in the dispersion has negligible effect on these
quantities.

To demonstrate this point, we carry out the same
calculation, but substitute the following power law at high

Table 1 Polybutadiene results

Experimental Calculated [equations (4), (5), and
(13)]
Kohlrausch Power law*
G (kPa) 1.15 0.86 1.16
’13 (Pa-s) 45 % 107 43 x 10 42 %107
J; (kPa~ h 1.6 1.53 1.54

“ Using equation (12} to extrapolate dispersion on the high frequency side

frequencies [i.e. beyond the peak in G"(w)]:
G'(w) * &~ " &> 30 (12)

where wp,, is the frequency of the maximum in the loss
modulus. Such an extrapolation of the terminal dlsperswn
has been recommended by Graessley and coworkers”*?7. As
shown in Figure I, this power law describes the data well
from the peak in G"(w), althrough about two decades past
the maximum. As seen in Table 1, when equation (12) is
used for high frequenmes the values calculated for %q
[equation (4)] and J [equation (5)] are essentially equal
to the results obtained using equations (1) and (8) to
describe the entire terminal dispersion. Any equation
accurate for G"(w) at lower frequencies will provide accep-
table values for the terminal viscosity and compliance.
Thus, neither equation (4) nor equation (5) offers a test of
the validity of the stretched exponential form for the term-
inal relaxation function.

Equation (7) from the CM can be used to account for the
breakdown of time—temperature superpositioning in the
softening zone. Such thermorheological complexity has
been observed for many polymers including, for example,
polystyrene2 . polylsobutylene 3 and atactic polypropy-
lene®'. Recently, Zorn et al.*? interpreted their rheological
data on PBD in terms of the CM, specifically addressing the
breakdown of time—temperature superpositioning. How-
ever, in this work®? the coupling parameter for the terminal
relaxation was not determined; a value of 0.425 was
assumed based on the literature. As is clear from Figure 1,
such a value for n is problematic, notwithstanding any
apparent utility in reconciling properties such as the
breakdown in time—temperature superpositioning.

Polystyrene

Ngai and Rendell** analysed published34 dynamic
mechanical data on monodisperse polystyrene, determining
that n = 0.425 for the terminal loss peak. In Figure 2 is
shown dynamic mechanical data for a higher molecular
weight polystyrene (M = 233 000) measured at 433K. The
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Figure 2 Terminal loss modulus for polysytrene (Mw = 233000), along
with the fit to equations (1), and (8) (n = 0.32)
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best fit to equations (1) and (8), which only describes the
low frequency side well, yields 0.32 for the coupling
parameter. This n is smaller than necessary to give the
correct molecular weight dependence of viscosity
(70 = My' ).

Using n = 0.32, we obtain from equations (4) and (5) 0o
= 83 X 10?Pa-s and JO =12 MPa™’, respectively. We
measure using equations (9) and (10) n4 = 8.2 X 10° Pa-s
and J? = 12 MPa, respectively, at T = 433K. As discussed
for PBD, the agreement simply reflects the fact that these
quantities are governed by the magnitude of G"(w) at low
frequencies; it does not corroborate the Kohlrausch form for
the terminal relaxation function.

From equation (7), relating the apparent activation energy
for the terminal viscosity to a non-cooperative, ‘primitive’
activation energy, the CM makes a prediction concerning
the relative temperature dependencies of the terminal and
segmental relaxations. However, this prediction is based on
the value of the coupling parameter. Using the putative
value of n = 0.425 for PS’s terminal relaxation, Ngai and
Plazek>® were able to give a quantitative accounting for the
temperature dependence of PS’s segmental relaxation. A
smaller coupling parameter, however, opens this rationale to
question. In fact, a coupling parameter for the terminal
relaxation equal to 0.32 would shift the segmental relaxation
temperature dependency predicted by the CM outside the
range of the experimental data®.

Tobolsky et al.' fitted equation (1) to the terminal
relaxation modulus for polystyrenes of varying molecular
weights, reporting 8 to be in the range 0.495-0.650, which
corresponds to 0.350 < n < 0.505. In Figure 3 we display
his data for two molecular weights, My = 242000 and
450000, along with equation (1) using both his reported
coupling parameters, and significantly different values for z.
It can be seen that the PS spectra can be described at least as
well using coupling parameters that are outside the range
required by the CM analysis. In general it is difficult to
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Figure 3 Relaxation modulus for polystyrene of My = 242000 (solid
symbols) and 450 000 (hollow symbols)'. The dashed lines are the equation
(1) fits reported by Tobolsky' (n = 0.505 and 0.35 for high and low My,
respectively), while the solid lines correspond to n = 041 and 0.23,
respectively
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uniquely describe time-domain relaxation functions; the
problem is exacerbated when, as herein, the data only poorly
conform to the fitting function.

Polyisoprene

The viscoelastic properties of monodisperse polyiso-
prenes in the terminal region were recently measured using
both dielectric and mechanical spectroscopies'*?°. Shown
in Figure 4 are the loss modulus and the dielectric normal
mode peak for linear PI of My, = 357 000, along with the fits
to equations (1) and (8). These results are similar to those for
PBD and PS—there is excellent agreement at low
frequencies, but the function underestimates both experi-
mental dispersions on the high frequency side. This
deviation is much larger for the mechanical data than for
the dielectric peak. The narrower breadth of the normal
mode is a consequence of the symmetry property of chains
having unreversed dipoles®. The best-fit n values for the
mechanical and dielectric data in Figure 4 are 0.37 and 0.13,
respectively. The latter in particular is too small for equation
(6) to be in agreement with the experimentally determined
relation nq = MRS 3738, Additionally, the CM in its present
form does not anticipate a difference in the terminal
relaxation spectra measured dielectrically versus by
mechanical spectroscopy.

Hydrogenated polybutadiene

Previously, Ngai and Plazek*' used the Kohlrausch
equation to fit the terminal loss modulus of hydrogenated
polybutadiene (HPB) of My = 177 000, reporting n = 0.42.
Equation (6) of the coupling model then yields » « M%‘f for
the molecular weight dependence of the terminal viscosity,
in agreement with experiment®’~°. We now analyse the
same HPB data®”, but include results for all HPB samples,
with molecular weights in the range from 95 600 to 350 000.
As shown in Figure 5, the breadth of the loss peak increases
slightly with molecular weight (with the exception of My =
202 000, the data for which is spurious). Emphasizing the
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Figure 4 Normal mode peak (triangles) for Pl of My = 357 000, along
with best fit (7 = 0.13) of equations (1) and (8). Also shown is the loss
modulus for the same polymer (circle)®, along with the fitted curve for
n=0.37
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Figure S Terminal loss moduli for HPB of My = 95600 (V), 150000
(A), 174000 ( = ), 202000 (O), 212000 (O), 359000 ( X ) and 361000
(©)*2*, the data have been shifted to superimpose on the curve for My, =
359 000. The lines correspond to equations (1) and (8) with n = 0.29 (——)
and n = 0.42 (- - -), respectively

low frequencies, the best-fit coupling parameters fall in the
range 0.21 < n < 0.29.

From equation (6), the value of n = 0.29 gives for the
viscosity a 2.8 power dependence on molecular weight;
thus, the CM’s prediction for the molecular weight
dependence of the viscosity is at odds with experiment.
This is in addition to the weak M w-dependence of n, and the
limited ability of equations (1) and (8) to describe the loss
modulus toward higher frequencies. If we improve the fit at
higher frequencies using n = 0.42 (Figure 5), the intensity is
overestimated on the low frequency side of the peak.

In addition to the molecular weight dependence of the
viscosity, the CM makes a prediction concerning the
temperature sensitivity of 7y relative to that of self-
diffusion* Spemﬁcally, the larger activation energy for
the viscosny is ascribed to a larger coupling parameter.
Although this explanation requ1res only that n, > Rgigssion
the quantltatlve predlctlon rely on n, = 0.42, a doubtful
proposition in light of Figure 5.

Continuity condition

The results above make clear that the CM approach goes
awry when equation (1) is used to describe the terminal
relaxation. However, the premise of the CM-—that the
relaxation transitions from uncorrelated to intermolecularly
cooperative dynamics at a temperature insensitive time—
may still be correct, notwithstanding the deficiency of the
Kohlrausch fitting function. This transition in relaxation
behaviour underlies equation (2), the continuity condition.
Virtually all the success of the CM, for example in
descrlbm% and predlctmg segmental relaxation proper-
ties*8-1013-184145 "arises from the application of equation
(2). Thus, if the validity of the continuity condition for the
terminal relaxation can be demonstrated, the failings
apparent in Figures I—5 become less important. Departure
of the terminal relaxation from stretched exponential decay

could be due simply to interference from other relaxation
modes. In fact, this is exactly the situation found for
segmental relaxation i in random copolymers!>3!- 46‘47, semi-
crystalline  polymers'>*8, polymer blends**>*  and
networks® —the segmental dispersion deviates from
equation (1) due to inhomogeneous line broadening.
However, for all these cases, equation (2) remains valid.

The continuity equation expresses the relationship
between of the microscopic relaxation time prevailing at
short times and the macroscopic relaxation time actually
observed in most experiments. Equation (2) assumes
stretched exponential decay for r+ > ¢, an incorrect
assumption as evidenced by the preceding results. Thus, if
the continuity condition is valid, it will have a different form
than equation (2). We can numerically evaluate the
continuity relation from experimental data. To do this we
note that at ¢, the non-cooperative relaxation time is given
by [cf. equation (2)]

L

In(GY/G()) (13)

70—

and evaluate how G(f) shifts in time for a change in 7. If
G(1) were given by equation (1), this shift, of course, corre-
sponds to the variation in 7*. Thus, the shift factor, defined
as the ratio, 7, /¢, necessary to satisfy equation (13) for given
7o, is determined, with its dependence on 7 defining the
continuity condition. Since 7* has a power-law dependence
on 7, [equation (2)], we assume the same functionality;
hence, a double logarithmic plot of ¢/t versus 7o will have
a slope equal to 1/1 — . This provides a determination of
the coupling parameter based only on the fundamental
premise of the model regarding the onset of intermolecular
cooperativity effects at a temperature insensitive time. Any
problem deviation of the terminal relaxation function from
the form of equation (1) is circumvented.

To carry out the calculation, we first transform the G"(w)
data in Figure 5 for HPB (My = 361 000) into the time

T — —— .
16 05
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t{s)
Figure 6 Relaxation modulus calculated from the G"(w) data for HPB
(My = 361000) in Figure 5. The dotted line is the coupling parameter
determined from the continuity condition [equation (13)] assuming a power
law dependence of the macroscopic relaxation time on 7
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domain [see equation (8)]. This is conveniently done by first
calculating the relaxation spectrum’. The result is shown in
Figure 6. Also displayed in Figure 6 is the coupling
parameter, determined from the quantity dlog(z /r)/dlog(7),
evaluated at each time of the G(¢) plot. We have assumed
tc = lps, consistent with neutron scattering®® and
simulation data'®*!. A fundamental assumption of the
coupling model is that the intermolecular coupling and
hence n, are constants in time for ¢ > ¢.. In fact, however, the
evaluation of the coupling parameter from the shape of the
HPB relaxation modulus indicates that n decreases with
time.

The magnitude of the couplin% 9parameter in Figure 6 is
consistent with previous work ™~ which, however, had
assumed a time-invariant n. The value of n associated
with the onset of the terminal relaxation is =~ 0.43, which
yields the correct molecular weight and temperature
dependencies [equations (6) and (7)] for the terminal
viscosity. The same conclusion is reached from similar
analyses of the data for PBD, PS and PI.

DISCUSSION

Previously, application of the coupling model to the
terminal relaxation relied on equation (1); this is over-
simplified, yielding an inadequate description of the
terminal dispersion. We believe the problem lies in
the neglect of the fact that the constraints associated with
the terminal relaxation in polymers are principally
lateral (transverse) to the chain contour. This feature,
which causes each chain to behave as if confined in a tube, is
the basis for the reptation model®®, commonly used to
interpret the rheology of polymer melts. Similar to the
failing seen herein for the CM, reptation theory does not
accurately predict the shape of experimental relaxation
functions. Modifications have been proposed to account for
this discrepancy® >°.

Evidently any theory of low frequency chain dynamics
must take into account the lateral constraints restricting the
Rouse motion of a chain. The CM’s assumption that these
constraints are permanent means that the coupling para-
meter remains constant for times longer than .. Consistent
with the results in Figure 6, mitigation of the lateral
constraints by motion of neighbouring chains will effect a
decrease in n with time. The correlation function resulting
from a time-dependent n would still follow the G(f) of
equation (1) until ¢ is of the order of or larger than the lateral
constraint lifetime ( = 7%), after which its decay will
accelerate. Notwithstanding the inadequacy of equation (1),
the predictions of the CM concerning the molecular weight
and temperature dependencies of the terminal relaxation
remain valid, as demonstrated herein through a numerical
evaluation of the continuity condition [cf. equation (2)]. To
demonstrate that the failing of equation (1) is indeed related
to the phenonmenon of constraint mitigation, an extension
of the model is required. Some preliminary efforts along
these lines, addressing the dielectric normal mode
relaxation in polymers, have been made®.
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