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Rotational dynamics of simple asymmetric molecules
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Molecular dynamic simulations were carried out on rigid diatomic molecules, which exhibit both α (structural)
and β (secondary) dynamics. The relaxation scenarios range from onset behavior, in which a distinct α process
emerges on cooling, to merging behavior, associated with two relaxation peaks that converge at higher temperature.
These properties, as well as the manifestation of the β peak as an excess wing, depend not only on thermodynamic
conditions, but also on both the symmetry of the molecule and the correlation function (odd or even) used to
analyze its dynamics. These observations help to reconcile divergent results obtained from different experiments.
For example, the β process is more intense and the α-relaxation peak is narrower in dielectric relaxation spectra
than in dynamic light scattering or NMR measurements. In the simulations herein, this follows from the weaker
contribution of the secondary relaxation to even-order correlation functions, related to the magnitude of the
relevant angular jumps.
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I. INTRODUCTION

Studies of the supercooled dynamics of small molecules
include not only the usual search for universal characteristics
but also discovery of a rich diversity in behavior among
different systems. Several classifications of glass-forming
materials have been proposed that are based on particu-
lar relaxation properties: (i) the extent of departure from
Arrhenius behavior of the structural relaxation time (e.g.,
fragile versus strong temperature dependences [1]); (ii) the
secondary relaxation present as a resolved peak or subsumed
by the structural relaxation dispersion (e.g., type-A versus
type-B glass-formers [2]); (iii) the nature of the appearance
of the primary peak above Tg and its intersection with the
secondary relaxations at higher temperatures (α-onset versus
merging scenarios [3]); (iv) thermodynamic scaling and related
properties of unassociated molecules versus that of liquids that
form complexes such hydrogen-bonded networks [4,5]; and (v)
the magnitude of the stretch exponent βKWW and its correlation
with other properties [6].

The categorization of liquids according to their properties,
as well as the search for universal behavior, presumes that
observations are material characteristics. However, some
aspects of relaxation depend on the experimental technique
used for the measurement. As an example, for many molecular
liquids, the intensity of the secondary β-relaxation is much
smaller, and the α-relaxation dispersion broader, when mea-
sured by dynamic light scattering or NMR, in comparison
to results from dielectric spectroscopy [7–14]. The origin of
such differences among materials and between experimental
techniques is poorly understood, but an understanding is
essential in order to connect the dynamic properties to
chemical structure. A first step is to determine the effect
of basic parameters, such as molecular shape, polarity, etc.,
on the experimental manifestations of relaxation; this can be
accomplished most easily using simulations of model systems.
A suitable system should be as simple as possible, while still
exhibiting α and β processes exhibiting the behavior observed
experimentally.

We have recently studied a family of rigid, asymmetric
diatomic molecules [15–17] interacting via a Lennard-Jones
potential. These species exhibit, in addition to the main α

relaxation, a secondary β process with properties characteristic
of a Johari-Goldstein (JG) relaxation [18]; that is, motion
that does not involve intramolecular degrees of freedom.
Similar molecules that are symmetric [19,20] or almost
symmetric [21–24] undergo 180 degree flips, which have
a signature in the correlation function different from that
observed experimentally, but a possible connection to the
JG-process has been noted. A Johari-Goldstein process has
also been observed in simulations of bead-spring polymers
[25,26].

In this paper we discuss features of the α and β relaxations
measured by different orientational correlators, which in
experiments are detected by different techniques (first-order
correlation function by dielectric spectroscopy, second-order
by dynamic light scattering and NMR). We also examine
how characteristics such as the temporal separation and
spectral breadths of the relaxations depend on the molecular
asymmetry. Our results help to rationalize the apparently
contradictory findings for such features when measured by
different experimental techniques. Physical insights are drawn
from analysis of the orientational dynamics in the correspond-
ing van Hove functions.

II. METHODS

Simulations were carried out using the HOOMD simulation
package [27,28]. The systems studied are binary mixtures
(4000:1000) of rigid, asymmetric, diatomic molecules. Atoms
belonging to different molecules interact through the Lennard-
Jones potential, using parameters for the Kob-Andersen liquid
[29]. Details of the procedure can be found elsewhere [15–17].
In this work we studied a family of molecules with constant
bond length (l = 0.45) and varying size ratio r of the two parti-
cles, from r = 0.5 (asymmetric) to 0.875 (nearly symmetric).
These parameters and sketches of the corresponding molecular
shapes are in Table I.
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TABLE I. Four rigid molecules of present study; σA and σB are
the Lennard-Jones size parameters for the large and small particles,
respectively.

Shape Bond length l Size ratio r = σB/σA

0.45 0.5

0.45 0.625

0.45 0.75

0.45 0.875

We study reorientational motions using the first- and
second-order rotational correlation functions

C1(t) = 〈cos θ (t)〉 , (1)

C2(t) = 1
2 〈3cos2θ (t) − 1〉, (2)

where θ is the angular change of a unit vector along the
molecular axis [30]. The same dynamical information is
contained in the corresponding susceptibilities, χ1(ω) and
χ2(ω), calculated from

χ (ω) = χ ′(ω) + iχ ′′(ω) = 1 + iω

∫ ∞

0
dt eiωt C(t). (3)

In this work we examine the dynamics of the majority
species in the mixture (i.e., the larger molecule); the behavior
of the minority species was qualitatively the same. Since the
simulated species are not intended to represent any particular

real molecules, the data are presented in normalized units
(Lennard-Jones units) of length σAA, temperature εAA/kB , and
time (mσ 2

AA/εAA)1/2.

III. ROTATIONAL RELAXATION

Previously we investigated the dynamics of a series of rigid
asymmetric diatomic molecules with r = 0.5 and established
that they show three distinct motions [16]: the slowest is
an α relaxation, and the fastest corresponds to vibrations; at
intermediate times there is a secondary process that exhibits
the characteristics of the Johari-Goldstein process seen in real
liquids [18].

In Fig. 1 we compare the first- and second-order rotational
susceptibilities for each of our four liquids. Both susceptibili-
ties show features corresponding to these same three dynamic
processes, which from low to high frequencies are the α

relaxation, the β relaxation, and vibrational motion. However,
the shapes of the two correlation functions are quite different.
For all four molecules, χ1 exhibits the α-onset scenario: At
high temperatures there is a single peak at the frequency of
the β process. On cooling to an onset temperature Ton, the α

relaxation emerges as a shoulder on the low-frequency side of
the more intense β peak. Thus, with decreasing temperature
the relaxation strength of the α process increases at the expense
of the β intensity. As r increases, making the molecule longer
and more symmetric, the only significant effect on the χ1

spectrum is that τα and τβ are more nearly equal, and the “α
onset” occurs at lower frequencies.

For χ2, however, the relative intensity of the β process
decreases substantially as the molecule becomes more sym-
metric, leading to a qualitative change from the α-onset

FIG. 1. (Color online) Left: first-order rotational susceptibility as a function of frequency for each liquid at various temperatures. All
spectra show α and β relaxations and (at a frequency near unity) vibrations. Right: Corresponding second-order susceptibilities, with the three
dynamic modes again evident in the spectra.
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FIG. 2. Left: First-order (dashed lines) and second-order (solid
lines) rotational correlation functions for each liquid, at temperatures
chosen to give similar α-relaxation times, τ (1)

α ∼ 104 for C1(t). Right:
Corresponding rotational susceptibilities as a function of frequency.
In both panels the curves have been shifted vertically for clarity.

scenario (seen in Fig. 1 for r = 0.5 and 0.625), to merging of
the peaks (r = 0.75). For r = 0.875, the “excess wing” sce-
nario is observed, presaging the absence of a secondary process
for the symmetric case [19]. The vibrational contribution is
stronger in χ2 than in χ1, since the former emphasizes smaller
angle motions. These various characteristics are brought out
in Fig. 2, comparing the time correlation functions and the
susceptibilities for the four molecules at temperatures for
which their τα are equal.

For spectra for which the α and β processes are both present,
the susceptibilities and correlation functions were analyzed
using the Williams ansatz [31]

C(t) = �αCα(t) + �βCα(t)Cβ(t), (4)

in which � represents the relaxation strength. This approach
assumes the two relaxations decay simultaneously and inter-
dependently. For the relaxation functions we used a stretched
exponential (Kohlrausch) equation [32] to fit the α-relaxation
and a Cole-Cole function [33] (or its time domain equivalent)
for the β. The common alternative to Eq. (4) is to assume the
two relaxation functions are additive in the time or frequency
domains. In that case the β relaxation herein had to be
described using an asymmetric function to provide a satis-
factory fit, which requires an additional adjustable parameter.
Nevertheless, the additivity assumption gave slightly poorer
fits and larger fitting parameter uncertainties than Eq. (4).
Since the dynamic heterogeneity of the α and β processes are
unrelated [17], both assumptions are plausible. For the present
simulated structures, the two approaches yield comparable
fit parameters, except when the α- and β-relaxation times
are very close (less than an order of magnitude difference),
in which case an analysis assuming distinct contributions is
questionable, given the breadth of the dispersions. From the
fits we obtain the time constants τα and τβ , relaxation strengths
�α and �β , the stretch exponent βKWW for the α relaxation,
and the shape parameter aCC for the β process.

FIG. 3. (Color online) Rotational relaxation times from first-
order (filled symbols) and second-order (open symbols) correlation
functions. For a given τα , separation of the primary (circles) and
secondary (squares) decreases with increasing molecular symmetry.
The triangles in the middle panel denote the merged αβ relaxation.
Lines are fits of Eq. (5) to the α relaxation times.

Relaxation times from the first- and second-order correla-
tion functions are plotted in Fig. 3, where it can be seen that
the difference between τα and τβ is reduced and the α-onset
timescale becomes longer with greater molecular symmetry
(larger r). The origin of this effect is uncertain. Generally,
the two processes are closer for weaker intermolecular co-
operativity; i.e., a smaller number of molecules moving in a
correlated fashion; this affects the α relaxation more strongly
than it does the weakly cooperative β process. A decrease in the
number of dynamically correlated molecules with increasing
molecular length was indeed found for similar molecules in
Ref. [17]. For the second-order rotational relaxation times
(open symbols), there is a change from “onset” (r = 0.5) to
“merging” (r = 0.75) behavior, and for r = 0.875 an “excess
wing” becomes apparent. (In this last case, reliable values of
τ

(2)
β cannot be determined and thus are omitted from Fig. 3).

Comparing the relaxation times for the two correlation
functions, τ (2)

α is always less than τ (1)
α , but this difference

decreases at lower temperature. For the secondary relaxations,
τ

(2)
β is three to four times shorter than τ

(1)
β for r = 0.5, but the

two time constants become more nearly equal with increasing
molecular symmetry.

The α relaxation times can be described by the Vogel-
Fulcher-Tammann (VFT) equation [32],

τa(T ) = τ0 exp

(
B

T − T0

)
, (5)

where τ0, B, and T0 are temperature-independent fit parame-
ters. In the first-order correlation function of the molecule with
r = 0.75, the α and β relaxation merge at T > 0.55; therefore,
a single VFT function cannot describe the data over the entire
temperature range. In that case we only fit for T � 0.55, where
the α and β processes are separated. At higher temperatures the
merged αβ relaxation has a different temperature dependence.
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TABLE II. Fit parameters of Eq. (5) for the temperature depen-
dence of the α-relaxation times from first- and second-order rotational
correlation functions.

r log τ
(1)
0 B (1) T

(1)
0 log τ

(2)
0 B (2) T

(2)
0

0.5 1.26 1145 0.48 0.27 1677 0.45
0.625 1.88 732 0.40 0.48 1427 0.35
0.75 1.95 820 0.35 0.64 1618 0.30
0.875 0.63 1792 0.30 − 1.39 3348 0.24

Interestingly, the curves for τ
(2)
αβ and τ

(1)
β intersect, so that at

the highest temperatures τ
(2)
αβ < τ

(1)
β . This can be understood by

considering the temperature variation of the intensities of the α

and β processes. Herein, as is the case for the species studied in
Ref. [16] and as is commonly found in dielectric spectroscopy
experiments [32], the intensity of the α relaxation decreases
with increasing temperature, but that of the β relaxation
increases. Although the merged αβ process cannot be resolved
into separated α and β processes, both α- and β-type motions
will exist within it, their respective contributions increasing
and decreasing with increasing temperature. This means that
at the highest temperatures, the merged peak is essentially the
β process, whereby τ

(2)
αβ can be shorter than τ

(1)
β , as is the case

for the β processes for r = 0.5 and r = 0.625.
A note on the timescales involved: the susceptibility peak

corresponding to vibrational motions (see Fig. 1) occurs at
a temperature-independent frequency on the order of unity in
Lennard-Jones units. For real materials the corresponding peak
frequency is typically around 1012 Hz [34,35], so that herein a
Lennard-Jones time unit equal to one corresponds to about 1
ps. Thus, the longest relaxation times herein are on the order of
a few microseconds on an experimental time scale. In principle
it is be possible to use Eq. (5) to extrapolate to the long times
associated with an experimental glass transition temperature
Tg; i.e., τα(Tg) = 100 s, which is about 1014 Lennard-Jones
units. Besides requiring an extrapolation of at least eight orders
of magnitude, this ignores the possibility of a crossover to a
different temperature dependence of τα at temperatures lower
than the ones simulated. Such dynamic crossovers are widely
observed in experiments on real liquids [36], and there is
indirect evidence of such in simulated simple liquids [37].

The fit parameters for Eq. (5) are shown in Table II. For
all molecules studied, the temperature dependence of τ (2)

α is
characterized by a higher effective activation energy (larger
B) and slightly lower Vogel temperature, T0, compared to
those of τ (1)

α . The same trend was observed in a comparison of
dielectric spectroscopy and light-scattering data, which yield
τ (1)
α and τ (2)

α , respectively [7]. T0 decreases systematically with
increasing molecular symmetry. For this series of molecules,
increasing symmetry also corresponds to increased molecular
length, so the behavior of T0 may be ascribed to packing
considerations, as discussed in Ref. [16]. The parameters τ0

and B show a maximum and minimum, respectively, with
increasing r .

The Kohlrausch stretch exponent, which is an (inverse)
measure of the breadth of the relaxation dispersion, is plotted
in Fig. 4 for the two correlation functions. The behavior of
C1(t) is similar to that observed in our previous simulations of
asymmetric-dumbbell-shaped molecules [16]: β(1)

KWW increases

FIG. 4. (Color online) Stretch exponent as a function of α-
relaxation time for first-order (filled symbols) and second-order (open
symbols) rotational correlation functions.

with increasing temperature (smaller τα), approaching unity
(exponential decay) at the “α onset.” For the second-order
correlation function, rotational relaxation is more stretched
(smaller exponent), consistent with experimental results for
tricresyl phosphate and glycerol, in which comparisons were
made of dielectric (χ1) and light-scattering (χ2) spectra
[12], similar results for several polymers [7–10], and recent
atomistic simulations of o-terphenyl [38]. The temperature
dependence of β

(2)
KWW becomes weaker with increasing r , and

for r = 0.875 the peak breadth is temperature-invariant; that
is, the nearly symmetrical case conforms to time-temperature
superpositioning. Most experimental studies report increasing
βKWW with increasing temperature [39,40], although in some
cases a temperature-independent βKWW has been observed
[12]. The origin of the different behaviors is unknown. The
situation is complicated when the α- and β-relaxation times
are within a few decades of each other, since the magnitude and
temperature dependence of βKWW will depend on the method
used to deconvolute the peaks. As stated, herein Eq. (4) was
applied for temperatures for which both peaks were present in
the spectra.

The symmetric version of these molecules (r = 1.0, with
various bond lengths) has been studied by Moreno et al.
[41]. They found the α process was only evident in the
second-order susceptibility, for which, however, the β process
was absent. The first-order susceptibility had only a single
peak, which resembles the β relaxation. This is due to the fact
that the secondary process in symmetric molecules consists
of 180-degree flips. Such flips contribute to a decay of the
odd-order correlation function, but make no contribution to
C2(t). This suggests that the different behavior of the odd and
even correlation functions is governed by the magnitude of the
angular jumps comprising the β dynamics. These magnitudes
can be quantified using the self-part of the angular van Hove
function [22]:

Gθ
s (θ, t) = 2

N sin θ

N∑
i=1

δ[θ − θi(t)]. (6)
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FIG. 5. (Color online) Gθ
s at various times for r = 0.5 at T = 0.5 (left) and r = 0.875 at T = 0.44 (right). The inset shows the first-order

rotational correlation function for the same temperatures and times. Each Gθ
s curve corresponds to one of the points in the inset. As a visual aid

we distinguish three different regimes, dominated by the three relaxations: (i) vibrational motions at short times (filled squares, dash-dotted
lines); (ii) β relaxation at intermediate times (open circles, solid lines); and (iii) α relaxation at long times (filled diamonds, dotted lines).

The probability that the molecular axis lies at an angle
between θ and θ + dθ at time t for an initial orientation θ = 0
at t = 0 is 1

2Gθ
s (θ, t) sin θ dθ . At long times Gθ

s goes to unity,
since all orientations are equally probable.

In Fig. 5 Gθ
s is plotted for two species representing the ex-

tremes in molecular symmetry herein. We can distinguish three
regimes, dominated respectively by vibrations, the secondary
relaxation, or the α process. At short times, corresponding to
vibrational motion, the molecules explore a relatively narrow
range of angles in a continuous way. At intermediate times
(secondary relaxation) the incidence of large angular jumps
increases, with the development of one or more peaks in Gθ

s ,
particularly for the more symmetric molecule. These peaks
are most distinct at the timescale of the β process. Finally, at
longer times (isotropic α dynamics) the peaks dissipate and
Gθ

s flattens, approaching a value of unity.
In Fig. 6 are Gθ

s for each molecule type near the end of their
β-relaxation regime. At that time the peaks corresponding to
large-angle jumps are most distinct, since they have nearly

FIG. 6. (Color online) Van Hove function for each molecule, at
a time near the end of the β-relaxation regime, where the large-
angle jumps are most prominent. Approximate positions of the peaks
(indicated by arrows) are sensibly independent of t . Curves have been
shifted vertically for clarity (decreasing r from top to bottom).

fully developed but have not yet begun to decay (this decay co-
incides with the onset of the α relaxation). For the nearly sym-
metric structure (r = 0.875), ∼ 180-degree flips are strongly
favored, with consequently a single prominent peak near 180
degrees. The molecule with r = 0.75 behaves in much the
same way, but with a broader, less-intense peak at large angles.
For more asymmetric molecules (r = 0.625 and 0.5), 180-
degree flips no longer dominate the β relaxation; rather, the
jumps occur over a broad angular range. Multiple, weak peaks
appear in Gθ

s , indicating that the preferred jumps are mostly
in the range of 90–150 degrees. At the timescale of Fig. 6,
translational motion of the molecular center of mass is not
yet significant, since it occurs at much longer times via the α

process. Each molecule’s neighbors are undergoing vibrations
and orientational jumps, but their center of mass is relatively
fixed; the material at this timescale is essentially a glass. The
peaks in Gθ

s , therefore, can be interpreted as the angles between
energetically favorable orientations of the molecules within the
quasistatic potential created by the neighbors.

This information about the angular displacements asso-
ciated with large reorientations of different molecules can
aid interpretation of the differences between the first- and
second-order rotational correlation functions. Jumps of 180
degrees enable C1 to relax but leave C2 unaffected. Therefore,
in the case of such large jumps, the β relaxation in C1

has a larger amplitude than in C2, and the α relaxation is
correspondingly weaker. Conversely, smaller jumps cause a
larger change in C2 than in C1, and therefore a larger amplitude
for the β relaxation in C2.

IV. DISCUSSION AND SUMMARY

Measuring the dynamics of liquids and polymers using
different experimental techniques (dielectric spectroscopy,
light scattering, nuclear magnetic resonance, and mechan-
ical spectroscopy) often yields differences in the response.
Such differences are important because in characterizing and
classifying liquids, it is critical to focus on true material
properties, rather than aspects of the behavior that depend on
the experimental probe. At the same time, understanding the
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origin of the differences can offer insights into the molecular
mechanisms underlying the measured dynamics.

Many of the differences arise in part due to the different
correlation functions relevant to different techniques. The
present work focused on the orientational correlation func-
tions: C1(t) in dielectric spectroscopy measurements and C2(t)
in depolarized light scattering and nuclear magnetic resonance
experiments. The literature [7,8–14] reveals that in comparison
to dielectric spectroscopy, light scattering yields longer or
equal α-relaxation times (although the opposite is sometimes
found in certain polymers [7]) and a smaller, or equal, stretch
exponent βKWW. In addition, the VFT temperature dependence
of τα is characterized by a larger parameter B [Eq. (5)] in light
scattering than for dielectric spectroscopy.

The secondary relaxation can also exhibit different be-
havior for different experimental techniques. In 2-picoline,
dimethylphosphate, and salol, the intensity of the secondary
relaxation, relative to that of the α process, is much less in
dynamic light-scattering spectra than in dielectric spectra [12].
For the glass-forming liquid diglycidyl ether of bisphenol A
(DGEBA), a β peak is only seen in dielectric measurements
[14]. On the other hand, in glycerol and m-tricresyl phosphate
the excess wing is weaker in the dielectric spectra [12,14].

In this work, we chose to simulate the simplest possi-
ble structure that results in α and β relaxations with the
characteristics observed experimentally. Compared to real
liquids, these diatomic molecules have fixed bond lengths and
lack any dipole moment. The effect of interactions on the
correlation functions C1 and C2 is also neglected, as these
are calculated based on the average of the corresponding
molecular correlation functions [30]. Therefore, care should
be taken in applying the results of these simulations to
experimental data; a complete accounting for the disparities
among dynamic measurements on real materials is certainly
beyond the scope of the present paper. Nevertheless, our results
illustrate how even for very simple structures, lacking internal
degrees of freedom and polarity, molecular motions can give
rise to spectral features that differ, inter alia, with the order of
the correlation function used for the analysis, in ways similar
to experimental results. Specifically we find:

(1) The variations in structural relaxation properties such
as τα and bKWW for different correlation functions are observed
in our simulations. The VFT parameters can also be affected,

although the approximate invariance of the product βKWWB

for different experimental probes, proposed in Ref. [7], does
not hold for the data in Table II.

(2) The diversity in the properties of the β relaxation found
experimentally is observed in the systems simulated herein.
For large r (more symmetric molecules) the β relaxation is
much weaker in C2 than in C1, while for small r it is equally
prominent in the two functions. The effect of experimental
probe on the β process seems to be nonuniversal; rather, it
depends on the molecular shape.

(3) All species investigated herein show an “α-onset”
scenario in the first-order correlation function: with cooling
the α peak begins to emerge on the low-frequency side of the
dispersion. In contrast, in the second-order function this onset
behavior is only found for less symmetric (shorter) molecules.
For the more symmetric cases the α peak merges with the β

process as temperature increases. For the largest r the intensity
of the β process becomes small, manifested in the second-order
susceptibility only as an excess wing. These differences in
the spectra are due primarily to the weak nature of the β

dynamics in C2 for large r due to the prevalence in the β

dynamics of 180-degree flips; these orientation reversals have
minimal effect on even correlation functions. It is noteworthy
that some species show an excess wing or the opposite behavior
(“onset scenario”) depending on the correlation function being
examined. This implies that classifying liquids according to a
type A or type B scenario (i.e., the presence and absence
of an excess wing) [2] may not be useful or generally
applicable.

(4) Consistent with experimental results, the α relaxation
is faster and broader (smaller stretch exponent) in C2 than
in C1. For the first-order function the stretch exponent
increases and its temperature dependence becomes stronger
with increasing molecular symmetry. The opposite trend is
observed for the second-order correlation function, resulting in
a temperature-independent peak shape for the most symmetric
molecule.
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