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Characteristics of the Johari-Goldstein process in rigid asymmetric molecules
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Molecular dynamics simulations were carried out on a Lennard-Jones binary mixture of rigid (fixed bond
length) diatomic molecules. The translational and rotational correlation functions, and the corresponding
susceptibilities, exhibit two relaxation processes: the slow structural relaxation (α dynamics) and a higher
frequency secondary relaxation. The latter is a Johari-Goldstein (JG) process, by its definition of involving all
parts of the molecule. It shows several properties characteristic of the JG relaxation: (1) merging with the α

relaxation at high temperature; (2) a change in temperature dependence of its relaxation strength on vitrification;
(3) a separation in frequency from the α peak that correlates with the breadth of the α dispersion; and (4) sensitivity
to volume, pressure, and physical aging. These properties can be used to determine whether a secondary relaxation
in a real material is an authentic JG process, rather than more trivial motion involving intramolecular degrees
of freedom. The latter has no connection to the glass transition, whereas the JG relaxation is closely related to
structural relaxation, and thus can provide new insights into the phenomenon.
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I. INTRODUCTION

A full understanding, let alone a first principles model,
of the dramatic slowing of molecular motions in a vitrifying
material remains a major unachieved goal of condensed matter
physics. In addition to the primary mode of motion, the
structural or α relaxation, glass-forming materials commonly
show faster dynamics. Many of these are of intramolecular
origin and thus unrelated to structural relaxation and the glass
transition. A particular type of secondary relaxation is the
Johari-Goldstein (JG) process, which involves all atoms in
the molecule and appears even in systems with completely
rigid molecular structures [1,2]. The JG process seems to
be universally present in glass-forming materials, including
molecular liquids, polymers, metallic glasses, and plastic
crystals. There is a large amount of experimental evidence
that the JG relaxation is closely related to, or perhaps even
serves as the precursor to, the α process.

Several decades after its discovery, the origin of the JG
process remains unclear, and there are distinctly different
hypotheses for the underlying mechanism; for example,
do JG motions entail low-amplitude reorientations of all
molecules [3,4], or are they limited to those species in local
regions of lower density [1]? Recent molecular dynamic (MD)
simulations suggest the answer may depend on temperature
and pressure [5]. Generally MD simulations hold great promise
to investigate the JG relaxation by being able to address the
simplest possible systems that capture the essential physics of
the process. Many simulations of the glass transition have
focused on mixtures of Lennard-Jones spheres. Although
these exhibit local, thermally activated jumplike motions in
the glass [6,7], nothing resembling JG relaxations as seen
experimentally appears in the dynamics of the simulated
systems, and generally the JG process is a neglected aspect
of the relaxation behavior of glass-forming liquids [8]. A
relaxation with characteristics of the JG was observed by
Bedrov and Smith in MD simulations of polybutadiene and
a simple bead-chain polymer model [9,10]. Higuchi et al.
[11,12] observed a secondary process in MD simulations of
a flexible diatomic molecule, but only a weak indication was

evident in the corresponding rigid molecule. In simulations
of symmetric [13] and almost symmetric [14,15] dumbbell
molecules with short bond lengths, 180◦ flips are prominent in
the rotational dynamics; these enable the odd reorientational
degrees of freedom to relax completely, even in the glassy state,
while the even degrees of freedom remain frozen. These flips
have some characteristics similar to secondary relaxations,
but differ from experimental observations in glass-forming
materials, where both first-order (measured by dielectric spec-
troscopy) and second-order (NMR or dynamic light scattering)
rotational correlation functions only partially relax via the JG
process, decaying to zero only over the longer α relaxation
time scale. In a recent study, we found that this is due to
the symmetry of the molecular structure; in an asymmetric
diatomic molecule, a reorientational mechanism is observed
that behaves much like the experimental JG process [5].

Here we simulate a family of asymmetric diatomic
molecules, analogous to those of Ref. [5], that exhibit a
secondary β process. In experimental studies, a series of
criteria have been proposed to distinguish the genuine JG
process from secondary dynamics of intramolecular origin [2].
In the case of a rigid molecule, the absence of intramolecular
degrees of freedom guarantees that any secondary relaxation
is a JG process, by its definition of involving the entire
molecule. We test the β process of our simulated asymmetric
diatomic molecules against these criteria, as well as various
experimental correlations observed for the JG process to
address the question: Is this β process the same phenomenon
as the JG relaxation in real glass-forming liquids? In other
words, how much of the physics of the JG relaxation, and
its rich behavior observed experimentally, can be captured
by our simple model system? This work will facilitate the
continuing efforts to understand the nature of the JG process
in glass-forming materials.

II. METHODS

Simulations were carried out using the HOOMD simulation
package [16,17]. The systems studied are binary mixtures
(4000:1000) of rigid, asymmetric diatomic molecules labeled
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AB and CD. Atoms belonging to different molecules interact
through the Lennard-Jones potential

Uij (r) = 4εij

[(σij

r

)12
−

(σij

r

)6
]

, (1)

where r is the distance between particles, and i and j refer
to the particle types A, B, C, and D. The energy and length
parameters εij and σij are based on the Kob-Andersen (KA)
liquid, a binary mixture not prone to crystallization [18]. The
procedure was as follows (noting that alternative choices of
εij and σ ij give qualitatively similar results): The energy
parameters εij are those of the KA liquid; i.e., εAA = εAB

= εBB = 1.0, εCC = εCD = εDD = 0.5, and εAC = εAD = εBC

= εBD = 1.5. To set σ ij we use the original KA parameters
for the larger A and C particles, while the B and D particles
are 50% smaller than A and C, respectively. Therefore, σ AA

= 1, σ CC = 0.88, σ BB = 0.5, and σ DD = 0.44. For the particle
interactions we take σij = Sij (σ ii + σ jj ), where Sij = 0.5
(additive interaction) when the particles belong to the same
type of molecule (i, j = AB, CD), and Sij = 0.4255 when the
particles belong to different types, the latter chosen to give the
KA value for σ AC = 0.8. All atoms have a mass of m = 1.
The bond lengths A–B and C–D were fixed using rigid body
dynamics [19]. All quantities are expressed in dimensionless
Lennard-Jones units; i.e., units of length σ AA, temperature
εAA/kB , and time (mσ 2

AA/εAA)1/2.
A family of liquids with bond lengths d = 0.45, 0.5, 0.55,

0.6, and 0.7 were simulated. Except where noted, simulations
were carried out in an NVT ensemble. Following Ref. [13],
densities were chosen to maintain a constant packing fraction
of approximately 0.63; this results in a similar pressure range
(approx. 0 < P < 10) for all molecules studied. The densities
were ρ = 1.3, 1.25, 1.21, 1.175, and 1.125, corresponding
to the bond lengths above. Simulations at constant pressure
give qualitatively identical results [5]. The time step was
�t = 0.005. Data were collected at each temperature after
an equilibration run several times longer than the structural
relaxation time. At low temperatures, structural relaxation
is extremely slow, and the translational and orientational
correlation functions do not decay to zero over the duration
of the simulation runs; i.e., the system is out of equilibrium.
For these conditions we increased the equilibration time until
neither significant drift in volume nor aging of the translational
and rotational correlation functions was observed; the residual
rotational motion of the molecules at these temperatures takes
place within a non-equilibrium but essentially static structure.

The glass transition occurs in the simulations when the α

relaxation time is much longer than the total (equilibration
and production) simulation time at a given temperature, which
is on the order of tmax∼106. This is about seven orders of
magnitude slower than the vibrational relaxation times, so
for an experimental glass-forming liquid corresponds to time
scales in the range 10−5 s range, rather than the ca. 100 s for
the usual experimental glass transition.

We follow the dynamics of the AB molecules (the behavior
of the CD molecules is qualitatively the same). Rotational
dynamics was studied via the first- and second-order rotational
correlation functions

C1(t) = 〈cos θ (t)〉, C2(t) = 1
2 〈3 cos2 θ (t) − 1〉, (2)

while translational dynamics were characterized via the
center-of-mass self-intermediate scattering function Fs(t) at
a wave vector qmax corresponding to the maximum in the
static structure factor. The associated frequency-dependent
susceptibilities were calculated via

χ (ω) = 1 + iω

∫ ∞

0
dteiωtφ(t), (3)

where φ(t) is C1, C2, or Fs .

III. RESULTS AND DISCUSSION

A. Rotational relaxation

Figure 1 shows the first-order rotational correlation function
for the AB molecules in the d = 0.5 liquid for various
temperatures. At short times, there is a small decrease in
C1 corresponding to oscillations within the local structure
formed by neighboring particles; τvib

∼= 0.1 independent of
temperature. At high temperatures C1 then decays to zero
via a single step. However, below a temperature Ton the
relaxation occurs in two steps, a shorter time β and longer
time α process. The latter appears as a long-time tail, which
grows in strength with decreasing temperature at the expense
of the β intensity. At T = 0.4 and lower, the α relaxation
time is much larger than the simulation run time; the system
is in a nonequilibrium glassy state. Nevertheless, C1 relaxes
significantly; the magnitude of the nonzero plateau value
increases with decreasing temperature.

The rotational dynamics can be more directly compared to
experimental dielectric relaxation data by converting to the

FIG. 1. (Color online) (a) First-order rotational correlation func-
tion and (b) imaginary part of the associated susceptibility, for the AB
molecules in the system with d = 0.5. Temperatures (short to long
times, high to low frequencies) are T = 1, 0.7, 0.6, 0.55, 0.52, 0.49
in the liquid state (solid lines) and T = 0.4, 0.33, 0.25 in the glass
(dashed lines). In this and all subsequent figures units of length σ AA,
temperature εAA/kB , and time (mσ 2

AA/εAA)1/2 are used.
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FIG. 2. (Color online) (a) First-order rotational correlation func-
tion and (b) imaginary part of the associated susceptibility, for the AB
molecules in the system with d = 0.7. Temperatures (short to long
times, high to low frequencies) are T = 1, 0.6, 0.5, 0.45, 0.40, 0.38.

frequency-dependent susceptibility [Fig. 1(b)]. In this form
the data show clearly the change in response with decreasing
temperature. Vibrational motion occurs at a temperature-
independent frequency, followed by a broad, symmetric β

peak, and a narrow, asymmetric α process that increases in
magnitude on cooling.

Figure 2 shows the rotational correlation function and
susceptibility for a system with a larger bond length, d = 0.70.
Again below an onset temperature, the spectrum is bimodal,
although the separation of the two processes is smaller, and the
onset temperature lower, than for the shorter molecule in Fig. 1.
This bimodal character of the peaks is more readily apparent in
the susceptibility spectra than in the time-correlation functions.

Higher-order rotational correlation functions, as well as
translational relaxation, behave in a qualitatively similar way,
although the relative intensities of the α, β, and vibrational
relaxations vary, and the relaxation times are slightly different.
This can be seen in Fig. 3, which shows the first- and second-
order rotational correlation functions, along with the center-of-
mass self-intermediate scattering function for a typical liquid
state point.

B. Deconvolution of α and β processes

Determining the relaxation times, intensities, and shapes for
the α and β processes requires deconvolution of the relaxation
function ϕ(t) into the component functions ϕα and ϕβ . Two
methods are commonly used to accomplish this: If the pro-
cesses are independent and uncoupled [20,21], the relaxation
functions are additive, so that the total relaxation function
(excluding the vibrational contribution) can be described by

φ(t) = (�φα)φα(t) + (�φβ)φβ(t), (4)

FIG. 3. (Color online) (a) Translational and rotational correlation
functions for the AB molecules in the system with bond length
d = 0.55. Self-intermediate scattering function for the center
of mass (solid line), first-order (dashes), and second-order (dots)
rotational correlation function. (b) Imaginary part of the associated
susceptibilities.

where �ϕα and �ϕβ are the α and β relaxation strengths,
respectively. A second approach assumes the β process takes
place in an environment that is rearranging on the time scale
of the α process [22,23], with the two being “statistically
independent”; this description yields the so-called Williams
ansatz (WA) [24]:

φ(t) = (�φa)φα(t) + (�φβ)φα(t)φβ(t). (5)

Both approaches are only approximate, and neither can be
correct when there is significant overlap of the two dispersions
because they are not independent, but rather correspond to
motions of the same molecular units at similar time scales.

For ϕα we use a stretched exponential function [25]
for the primary relaxation, φα(t) = exp[−(t/τα)βK ]. When
using the WA, the β process can be fitted by a Cole-Cole
function in the frequency domain or its transform in the
time domain. However, to obtain an acceptable fit using
Eq. (4), an asymmetric β peak is needed; we use the empirical
Havriliak-Negami function [25]

χβ(ω) = [1 + (iωτHN)a]−b. (6)

The two methods, Eqs. (4) and (5), can yield different
results if there is significant overlap between the α and β

processes. Figure 4 compares relaxation times derived from
fits by either method, for molecules with bond lengths d =
0.55 and 0.70. For the former, the methods yield similar
relaxation times, with a slightly faster α process for the WA
at high temperature. The two processes behave according
to the “splitting scenario,” where a separate onset of the α

process emerges at a temperature Ton at which τα and τβ

are significantly different; the high-temperature relaxation
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FIG. 4. (Color online) α and β relaxation times for d = 0.55
(short) and d = 0.7 (long) molecules, obtained by fitting using the
Williams ansatz [Eq. (5), filled symbols] and additive combination
[Eq. (4), open symbols].

above Ton appears as the continuation of the β process. For
longer bond lengths, the WA gives again a separate onset for
the α process, but with a very small separation of the two
relaxations at the onset temperature. Fitting using the ad-
ditive assumption yields a slightly different picture: the
high-temperature relaxation appears as a continuation of
the low-temperature α process, conforming to the so-called
“merging scenario.” This suggests that as the separation
between the α and β relaxation times becomes very small
(around a decade or less), the results depend on the (somewhat
arbitrary) deconvolution method.

C. Dependence of relaxation behavior on bond length

In Figs. 5 and 6 are shown the variation with temperature
of the relaxation times and strengths for the two processes,
for bond lengths between 0.45 and 0.6. The β process has
Arrhenius behavior in the glassy state, while above Tg some
curvature in log τ vs 1/T plots is evident. The β relaxation
strength increases with increasing temperature, while that
of the α decreases, going to zero at Ton. These are the
same trends observed experimentally in the dielectric strength
and relaxation times of supercooled liquids that conform to
the “splitting scenario” for the α-β crossover region. With
increasing bond length the β process slows and its activation
energy increases, as expected for a noncooperative process
(the potential barrier for local rotation of a single molecule
should be higher for larger bond lengths). The behavior of
the α process is more complex. With increasing bond length,
the α dynamics becomes faster (lower Tg), until approximately
d = 0.65–0.7, whereupon the trend reverses, Tg increasing with
increasing d (not shown). The same behavior has been found in
symmetric dumbbell molecules [13,26]. There it was related
to molecular packing: For nonspherical particles of various
shapes such as ellipsoids [27] and spherocylinders [28], the
maximum attainable packing fraction is a nonmonotonic
function of the aspect ratio; packing increases then decreases
with increasing molecular elongation. The difference between

FIG. 5. (Color online) Temperature dependence of the rotational
relaxation times of the α process (solid symbols) and β process
(hollow symbols: glass; dotted symbols: liquid) for the systems with
bond lengths d = 0.45, 0.5, 0.55, and 0.6.

the actual and maximum packing fraction, which determines
the volume available for molecular reconfigurations and thus
affects Tg , will increase and then decrease with increasing bond
length. This underlies the observed dependence of Tg on d.

D. Testing for characteristic properties of the JG process

The purpose of this work is to determine if properties of
the β process observed herein in MD simulations conform to
various criteria proposed as characteristics of JG relaxations
seen in experimental work [2,29].

FIG. 6. (Color online) Temperature dependence of the intensities
of α (solid symbols) and β (hollow symbols: glass; dotted symbols:
liquid) processes for the systems with bond lengths d = 0.45, 0.5,
0.55, and 0.6.
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1. Merging with the α process

An important characteristic of the JG process is that at
high temperatures it merges with the α process [30,31].
Such is the case here: relaxation functions for both rotational
(C1, C2) and translational motions (Fs) exhibit merging;
at high temperatures there is only a single decay of the
correlation function, or equivalently one susceptibility peak.
Note this observation requires asymmetric molecules, since for
symmetric or quasisymmetric diatomic molecules, odd-order
rotational correlators show only local dynamics (i.e., single-
molecule 180◦ flips), which do not appear in the even-order
correlators. In symmetric dumbbell molecules, translational
motion is also insensitive to the 180◦ flips because such flips
leave the center of mass in the same position.

2. Change in temperature dependence of relaxation time and
relaxation strength across Tg

On heating through the glass transition, the JG process
generally shows a change in activation energy, along with
a stronger temperature dependence of the relaxation strength
[32–34] (non-JG relaxations sometimes show similar behavior
[35]). For the simulated systems, the T dependence of
the secondary relaxation changes only monotonically with
temperature (Fig. 5), without the marked change in activation
energy reported for some liquids [32–34]. The relaxation
strength, however, does show discontinuous behavior as the
glass transition temperature is traversed (Fig. 6).

An empirical correlation has been reported between the
activation energy Eβ of the JG process in the glassy state and
the glass transition temperature: Eβ = 24 kTg [36]. It has been
pointed out that examining a wider range of materials reveals a
wide spread of Eβ/Tg around the mean value of 24 [37]. This
correlation does not hold among the systems simulated here:
Increasing the bond length systematically decreases Tg , but
the β activation energy increases. This is reminiscent of the
behavior of n-alkyl methacrylates, where Tg decreases with
increasing alkyl chain length, but the JG activation energy
is little affected. In the case of the methacrylates this has
been ascribed to internal plasticization with increasing alkyl
chain length causing lower Tg [38]. We speculate that a similar
effect may be operative in the simulated system, caused by the
decrease in Tg due to increased packing efficiency.

3. Correlation of τβ with width of the α process

It is an empirical observation that for a given value of
τα , the JG relaxation time correlates with the breadth of the
α dispersion, the latter usually quantified by the Kohlarusch
stretch exponent βK . Alternatively, this correlation implies
that the ratio τα/τβ increases as βκ decreases [39]. These
relationships show unambiguously a connection between the
α and JG processes.

Figure 7 shows that the stretching exponent for the α

process in our simulations is strongly correlated with the
relative magnitude of the α and β relaxation times, τα/τβ .
The inset shows that the β relaxation time is a function of βK

at fixed τα for the four systems studied. These correlations
mirror experimental observations.

FIG. 7. (Color online) α-process stretch exponent as a function
of the separation of α and β time constants for systems with bond
lengths d = 0.45, 0.5, 0.55, and 0.6. Inset: Stretch exponent as a
function of β relaxation time for the four systems at a constant α

relaxation time of 105.

4. Effect of pressure

The JG relaxation time is sensitive to pressure, in contrast
to the negligible pressure dependence of intramolecular sec-
ondary relaxations. In several materials it has been found that
the α and β relaxations shift with pressure and temperature
such that τβ is invariant at constant τα . Figure 8 shows
the pressure dependence of the α and β relaxation times at
constant T = 1.0 for two of the systems. The β processes
show a strong pressure dependence, having activation volumes

FIG. 8. (Color online) Relaxation times for α and β processes as
a function of pressure for T = 1.0, for the systems with bond lengths
d = 0.5 and 0.6.
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(V ∗ ≡ RT d ln τ
dp

) of the same order of magnitude as those of
the respective α relaxations: V ∗

α = 0.067 and V ∗
β = 0.036

for the shorter molecule (d = 0.5), and V ∗
α = 0.079 and

V ∗
β = 0.055 for d = 0.6. Often experimental V ∗

α are similar
to the molecular volume Vm. For our simulated systems V ∗

α

is several times smaller than Vm; however, the experiments at
high pressure are carried out to longer times and thus lower
temperatures than herein, and V ∗

α increases with decreasing
temperature. For state points with the same τα but densities
differing by up to 20%, τβ is only approximately constant,
with a small but systematic speeding up of the β process with
increasing P and T (not shown). At constant τα , the relaxation
strength of the β process also systematically decreases with
increasing P and T .

5. Effect of physical aging

The intensity and relaxation time of the JG process in
the glassy state are affected by physical aging, while other
secondary processes are relatively insensitive to aging [40–45].
The JG relaxation strength typically decreases with aging time,
and τβ slightly decreases. The latter effect is counterintuitive,
since physical aging is accompanied by an increase in

FIG. 9. (Color online) Physical aging in the glassy state, for
bond length d = 0.5: Potential energy per molecule (top), β

relaxation time (middle) and β relaxation strength (bottom) as a
function of aging time following a temperature jump from T =
0.5 to temperatures T = 0.45, 0.40, 0.35, under constant pressure
P = 1.

FIG. 10. (Color online) Relaxation strength vs relaxation time
during aging for bond length d = 0.5. Lines are power law fits with
a common exponent.

density which, under equilibrium conditions, would increase
relaxation times.

Figure 9 shows the evolution of the relaxation time and
strength of the β process during physical aging of the species
with d = 0.5. This simulation was carried out at a constant
P = 1, with the liquid equilibrated at T = 0.5, followed by
an instantaneous temperature jump to the aging temperature
(T = 0.35, 0.4, or 0.45). An NPT run was then carried out,
and data collected at various times sufficiently long to observe
the β process (t > τβ), but short enough that the change
of the dynamics during each collection period was minimal.
The potential energy (also plotted in Fig. 9) shows a marked
decrease with aging time at fixed P and T , a clear signature
of physical aging (the volume follows similar kinetics). The β

relaxation strength decreases and τβ slightly decreases during
aging, similar to experimental observations.

The changes in the secondary relaxation caused by aging
have been described in the framework of an asymmetric
double-well model [40,46]. This model is based on two
quantities, the energy barrier U between the two wells and
�, their energy difference. Qualitatively, � is predicted to
increase and U to decrease with aging time, and if the
sum 2U + � remains constant during aging, the relaxation
strength and relaxation time during aging should be related
by a power law, �φβ ∝ τ 0.5

β . In an experimental study of
aging of polyvinylethylene, a power law was found with a
smaller exponent of 0.34, reflecting a decrease of 2U + �

with aging [40]. The present aging data are compatible with a
power law exponent of 0.45 ± 0.8 (Fig. 10).

IV. SUMMARY

We carried out MD simulations on rigid diatomic molecules
lacking internal degrees of freedom, whereby their secondary
relaxations, intermediate between the temperature-insensitive
vibrations and structural relaxation, are by definition the
Johari-Goldstein type. Experiments on real liquids suggest
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that a number of properties serve as signatures of the Johari-
Goldstein process (see Ref. [2] and refs. therein); secondary
relaxations exhibiting these properties are presumed to involve
motion of all atoms in the molecule. These properties and the
conformance of our simulated diatomics are the following:

(1) At high temperatures only a single manifestation of
either the translational or rotational dynamics is observed;
thus, merging with the α relaxation is a characteristic of the
JG process.

(2) If the JG process serves as the precursor to structural
relaxation, it is expected to “sense” Tg , and the T dependence
of the strength of JG relaxation does change as Tg is traversed.
However, no clear change in the activation energy is observed
at Tg.

(3) The separation in frequency of the JG and α relaxation
peaks is determined by the breadth of the α dispersion. The
implication is that the intermolecular cooperativity that broad-
ens the α dispersion (dynamic heterogeneity more broadly
distributing the α relaxation times) slows the α process,
moving it further away from the JG relaxation.

(4) The JG relaxation is intermolecularly correlated and
therefore sensitive to volume; this causes τβ to change with
both pressure and physical aging.

Solving the glass transition problem is complicated by
the many interrelated properties associated with vitrification
of a liquid. The JG relaxation affords an opportunity to
circumvent some of these complications, by serving as the
precursor of structural relaxation, while being less affected
by intermolecular cooperativity. Progress requires correct
identification of the JG relaxation among the myriad secondary
relaxations exhibited by glass-forming materials, especially
associated liquids and polymers. The work herein helps clarify
those properties that are inherent to the JG process, and
shows that a secondary relaxation with these properties can be
observed in very simple model systems. Although the problem
of identifying the origin of the JG process in real liquids
remains, the MD simulations reveal that both low amplitude
reorientations of all molecules and large angular displacements
of only some can underlie the secondary dynamics, and in this
manner simulations can serve as a useful tool to investigate
the origin and complexities of JG processes.
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