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ABSTRACT: Dielectric spectra were obtained on a low
molecular weight poly(methyl methacrylate) (PMMA) over a
range of temperatures (331 < T (K) < 386) at pressures
approaching 0.8 GPa. The α relaxation times, τα, superpose
when plotted versus T/ργ, where ρ is density and γ a material
constant, in accord with results for many other van der Waals
liquids and polymers. However, the Johari−Goldstein (JG)
relaxation times, τJG, do not conform to this density scaling for
the same value of the exponent γ. Likewise, the frequency
separation of the α and JG loss peaks in the spectrum increases
with pressure for constant τα; that is, state points having the
same α relaxation time and same peak breadth have different
τJG. Similar results were obtained on a lower molecular weight
PMMA, for which there was less overlap of the two peaks. The implication is that density scaling of the segmental relaxation
times originates in the glass transition dynamics, not, as recently suggested, in higher frequency secondary processes.

■ INTRODUCTION

Density scaling refers to the superpositioning of structural
relaxation times, τα, when expressed as a function of the ratio of
temperature to density, where the latter is raised to the power γ

τ ρ=α
γf T( / ) (1)

Equation 1 has been shown to apply to experimental
measurements on virtually all nonassociated liquids and
polymers.1−6 Equivalent relations describe the viscosity,
diffusion constant, and other dynamical properties, although
when data extend to high temperatures, as common for
viscosities7,8 and molecular dynamics simulations (mds),9,10 the
use of scaled quantities improves the superpositioning.11

Beyond a means to categorize and organize experimental data
spanning broad ranges of temperature and pressure, interest
arises in density scaling because of the physical meaning that
may be ascribed to the material constant γ. For example, from
mds it has been shown that γ (i) is approximately one-third the
effective slope of the intermolecular repulsive potential,9,12 (ii)
equals the proportionality constant between isochoric equili-
brium fluctuations of the virial and potential energy,10,13 and
(iii) from the latter can be connected to linear thermovisco-
elastic constants.14

Density scaling is invariably applied to τα or other dynamical
quantities that are coupled to the α-relaxation time such as the
viscosity and diffusion constant. However, there are two
relaxation processes that, while not directly related to structural
relaxation, are considered to bear a relationship to τα: the
terminal relaxation giving rise to a low-frequency dispersion in
the mechanical loss of polymers and the Johari−Goldstein (JG)
secondary relaxation found in all molecular liquids and

polymers. The former is responsible for the normal mode
peak in the dielectric loss of polymers having a dipole moment
parallel to the chain backbone, such as 1,4-polyisoprene,15

polyoxybutylene,16 and poly(propylene glycol).17 Since theories
of polymer dynamics such as the Rouse and reptation
models18,19 posit that chain motions are governed by the
same local friction coefficient associated with the segmental
dynamics, superpositioning of the normal mode relaxation time
should yield essentially the same value of the scaling exponent
found for τα. To a good approximation, this correspondence is
borne out by experimental data.15−17,20

The JG relaxation refers to local, noncooperative dynamics
not requiring intramolecular degrees of freedom. The JG peak
in the relaxation spectrum occurs at the lowest frequency of any
secondary processes, and the fact that it precedes in time the α-
relaxation has been taken to imply that the JG process plays a
role in structural relaxation, even serving as its precursor.21 This
in turn leads to the expectation that JG relaxation times, τJG,
should superpose for the same scaling exponent as γ for τα. This
idea was recently tested using dielectric measurements on
diglycidyl ether of bisphenol A.22 Most of the JG relaxation data
in that work were for temperatures below the glass transition,
where changes in τJG with pressure are small (ca. 1 decade or
less22). Direct determination of α relaxation times in the glass
are not possible, and in fact it is currently unknown whether
density scaling is valid in the glassy state. Moreover, JG
relaxation times in the glassy state are dependent on the
thermodynamics path followed during the glass formation; that
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is, glasses cooled under different pressures can exhibit very
different τJG.

23−25 This makes problematic (if not untenable)
the hypothesis that τJG are only a function of T and ρ in the
glassy state. Nevertheless, the conclusion was drawn in ref 22
that τJG superpose for the same value of γ that superposes τα
when these relaxation times are plotted versus T/ργ. The
simultaneous density scaling of the α and JG relaxations was
taken as confirmation of a prediction of the coupling
model,26,27 that these respective relaxation times are related
according to21

τ τ=α
β β−t[ ]c

1
JG

1/KWW KWW (2)

in which tc (∼1 ps) is a constant and βKWW represents the
stretch exponent of the Kohlrausch−Williams−Watts correla-
tion function for the α process.28 According to eq 2, if βKWW is
constant or a function of τα,

29,30 both relaxation times should
conform to density scaling with equivalent values of γ;
otherwise stated, the ratio τJG/τα is a constant for any value
of τα for a material conforming to density scaling.
In this paper we describe dielectric measurements on a low

molecular weight poly(methyl methacrylate) (PMMA) ob-
tained over a range of temperatures and pressures. Using the
equation of state for the material, we express τα and τJG as a
function of the scaling variable T/ργ. We find that, in accord
with results for many glass-forming materials,1−6 the α-
relaxation times superpose according to eq 1 with γ = 1.94.
There is a prominent secondary relaxation in the spectra of
PMMA that has been identified as a Johari−Goldstein process,
that is, involving all atoms of the repeat unit.31 We find that τJG
for PMMA does not conform to the scaling relationship using
the value of γ = 1.94. We also find that for state points having a
constant value of τα the τJG are not equal. From these
experimental observations we conclude that the relation
between τα and τJG is not invariant; this implies that the
coupling model interpretation of density scaling is only
approximate, if not incorrect.

■ EXPERIMENTAL SECTION
The PMMA (weight-average molecular weight = 1970 Da;
polydispersity = 1.14) was obtained from Polymer Standard Service,
Inc., and used as received. We also included data from measurements
on a lower molecular weight (= 402 Da) PMMA. For the dielectric
measurements the sample was pressed as a melt between two
electrodes (diameter = 16 mm) separated by a Teflon spacer
(thickness = 100 μm). For the equation of state (PVT) measurements,
a ∼0.8 mL plug was molded under vacuum. The density at
atmospheric pressure and temperature was measured using the
buoyancy method, with the relative changes in density as a function
T and P then determined using a Gnomix apparatus with mercury as
the confining fluid.
Dielectric spectra were measured with a Novocontrol Alpha

analyzer. For measurements at high pressure, the sample was
maintained in a custom-built chamber based on a Harwood
Engineering pressure vessel, placed in an Tenney environmental
chamber (temperature control = ±0.1 °C).

■ RESULTS AND DISCUSSION
Figure 1 shows representative dielectric constant and loss
spectra for the PMMA. Two overlapping peaks, corresponding
to the primary α and JG secondary relaxations, are evident in
the spectra, along with a contribution toward lower frequencies
from ionic conduction. The overlapping worsens at higher
temperatures and lower pressures because not only are the
peaks closer but also the relative intensity of the JG process

grows as that of the α-relaxation diminishes. This is shown in
Figure 2 in a plot of the respective dielectric strengths versus

density, the latter determined for each state point using the
equation of state for PMMA (described below). Because of this
overlapping, deconvolution of the peaks is required to
determine the relaxation times from the peak frequencies.
The dielectric spectra can be fit by assuming the various

contributions are simply additive:

ε ω σ ωε ε
ε

ωτ
ε* = + * +

Δ

+
+α

β
∞i

i
( ) ( / )

(1 ( ) )
n

a bDC 0
HN

(3)

Figure 1. Real and imaginary part of the dielectric permittivity versus
frequency for PMMA at T = 360.9 K and P = 53.2 MPa. The solid
lines are fits of both eq 3 and eq 6; the difference is not discernible.
The contributions of the α and JG processes, along with the ionic
conductivity, are indicated.

Figure 2. Dielectric strength versus density during isobaric and
isothermal measurements for the α relaxation (filled symbols), the JG
process (open symbols), and their sum (half-filled symbols).
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The first term on the right-hand side represents the
conductivity due to mobile ionic impurities, with the exponent
being nearly constant (0.8 ≤ n ≤ 1). The last two terms are the
Havriliak−Negami function used to describe the secondary
relaxation, with ΔεHN the dielectric strength, τHN the relaxation
time, the constants a and b shape parameters, and ε∞ the high-
frequency limiting value of the dielectric constant. The primary
α-relaxation is fitted to the Kohlrausch−Williams−Watts
(KWW) correlation function32,33

ε τ= − βt t( ) exp[ ( / ) ]KWW KWW
KWW (4)

with

∫ε ε
ε* = Δα α

ω
∞

−t
t

t
d ( )

d
e di t

0

KWW
(5)

with βKWW the stretch exponent and τKWW the relaxation time.
The relaxation times reported herein are defined as the
reciprocal of the frequency of the maximum in the dispersion;
thus, τα < τKWW and τJG < τHN. The real and imaginary
permittivities in Figure 1 were simultaneously fit to eq 3, with
the obtained values of the relaxation times indicated.
When the peaks in the spectrum are not well separated, there

is an alternative to eq 3 that accounts for the effect that
structural relaxation may have on the JG process.34

ε ε ε ε= + −α αt f t f t t( ) ( ) (1 ) ( ) ( )KWW KWW HN (6)

In this equation, fα is the relative strength of the α-process and
εHN(t) is the Fourier transform of the Havriliak−Negami
function. This equation is only applied to the dielectric loss,
and fitting to the ε″(ω) in Figure 1 gives a curve that cannot be
discerned from the best fit of eq 3. The relaxation times for the
two analyses differ by less than 10%; for more widely separated
peaks this difference will, of course, be less.
To interpret the high-pressure data in term of the mass

density requires the equation of state (EOS) for the PMMA.
From measurements of the specific volume as a function of
temperature and pressure, the Tait EOS above the glass
transition is obtained

α= −

+ −

V T P V T

P b b T

( , ) exp( ){1 0.0894

ln[1 /( exp( ))]}
0 0

0 1 (7)

with V0 = 0.826 ± 0.003 mL/g, α0 = (6.2 ± 0.04) × 10−4 C−1,
b0 = 235 ± 2 MPa, and b1 = (3.75 ± 0.01) × 10−3 C−1. The
dielectric strength for the α and JG processes are displayed in
Figure 2 as a function of density. For both isobaric (upper) and
isothermal (lower) conditions, the relaxation strengths
approach the same value at the glass transition, with Δεα
tending to zero for shorter τα (≅10−5 s). This behavior has
been described previously for poly(alkyl methacrylate)s due to
temperature changes alone.35 The results in Figure 2 show that
the relaxation strengths are connected to the dynamics; that is,
the relative dielectric strength for the two processes depends on
the magnitudes of τα and τJG. According to the Kirkwood−
Frölich relation,36 the dielectric strength should increase with
increasing density (higher dipole concentration) and decreasing
temperature (stronger dipole correlations). The data in Figure
2 are consistent with this expectation, Δεα increasing more
strongly with ρ for cooling at constant pressure than for
isothermal densification.
The relaxation times of the α-process obtained by fitting eq 3

to the spectra are displayed as a function of density in Figure 3.

These data can be described by the modified Avramov
equation37

τ ρ τ ξ
ρ

=α γ

ϕ

−

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥T

T
( , ) exp0

(8)

where τ0 corresponds to the high T, low ρ limit of τα, ξ is
related to the height and distribution of the energy barriers
governing segmental motions, and ϕ is proportional to the
isochoric heat capacity. The Avramov model relates changes of
the relaxation time to changes of the entropy. Equation 8 was
derived by expressing the entropy change as a function of
density and temperature, with γ identified as the Grüneisen
constant.37,38 This equation satisfies the density scaling (eq 1).
From the fit of eq 8 to the τα(T,ρ) (solid lines in Figure 3),

the scaling parameter is determined, γ = 1.94 ± 0.02. (The
values of the other parameters in eq 8 are B = 379 ± 9 kg−γ

mLγ, log(τ0/s) = −6.8 ± 0.3, and ϕ = 7.5 ± 0.4.) Previously, we
found that for a range of materials the parameters γ and ϕ are
anticorrelated and described approximately by the relation γϕ =
17.9 ± 3.7; for the present case, γϕ = 14.5 ± 0.9, which is
consistent within the error.
The relaxation times obtained from the spectra are plotted in

the scaling form in Figure 4, with the exponent γ determined
from the fit of eq 8 to τα. The α relaxation times superpose well
over 6 decades. Included in the figure are the JG relaxation
times, which clearly deviate from density scaling. Given the
narrow span of the τJG, density scaling could be achieved using
a different value of γ (≈ 1.1 ± 0.1); however, τα and τJG do not
superpose for the same value of γ.
Corroboration of this finding can be obtained by comparing

the positions of the two dispersions. Thus, as shown in Figure
5, we fit three loss spectra to eq 3 using constant values of
βKWW = 0.38 and log(τα/s) = −1.749. The obtained τJG, listed
in the figure, increase significantly with increasing temperature.
This variation in τJG for fixed τα means the two relaxation
processes do not conform to eq 1 for a common value of γ.
This also implies deviation from eq 2 of the coupling model. In
Figure 6 the same analysis is carried out for a PMMA of lower
molecular (Mw = 402 Da), which has substantially greater
separation of the α and JG dispersions. For essentially constant
τα, the JG relaxation times differ by 1.3 decades, further

Figure 3. α-Relaxation times versus density, along with fits to the
modified Avramov equation (eq 8).
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supporting our result that the JG process does not density scale
for the same γ that superposes the α relaxation times.
The scaling exponent for PMMA, γ = 1.94, is at the low end

of the range reported for van der Waals liquids and polymers,
1.8 ≤ γ ≤ 8.5.4−6 The inference is that the segmental dynamics
of PMMA is governed primarily by temperature, with a
relatively weak effect of density. As seen in Table 1, which
includes prior results39,40 on other PMMA samples, the scaling
exponent for PMMA varies inversely with molecular weight,
consistent with the general trend that polymers have smaller γ
than the values for molecular liquids. Density effects on the
dynamics are weaker for polymers than small molecules
because of the influence of the intrachain potential on the
dynamics of polymers.5,12 Thus, large density scaling exponents
are only found for polymers with very flexible backbones (e.g.,
polysiloxanes41).
In addition to serving as a measure of the relative influence of

thermal energy and density on the dynamics, γ has another
interpretation. From molecular dynamics simulations, the
scaling exponent for Lennard-Jones particles was found to
equal one-third the slope of the intermolecular potential in the

region between the distance of closest approach between
particles and the half-maximum of the pair distribution
function.9 From this fact and notwithstanding that eq 1 is
invariably applied to τα, Ngai et al.

22 surmised that the scaling
property originates in the JG relaxation, rather than the α-
process. This conclusion is undermined by the present finding
that different scaling exponents are required to superpose τα
and τJG. The argument in ref 22 is that the relevant
intermolecular distance over which γ is equivalent to the
steepness of the potential is much shorter than the length scale
of the α-relaxation. Although this length scale is a measure of
the spatial extent of the α-process, this does not mean that over
the course of structural relaxation intermolecular distances attain
such large lengths. Rather, the particular pair contacts change as
the relaxing species encounter different near neighbors;
however, the intermolecular distances governing the potential
remain smaller than the α-relaxation length scale. Thus, the
reported connection1,9,11 between the magnitude of γ and the
slope of the intermolecular potential is consistent with density
scaling originating with the α-process.

■ SUMMARY
It was recently proposed that density scaling of the structural
relaxation in liquids and polymers originates from the JG
relaxation. This leads to the expectation that τα and τJG should
superpose according to eq 1 for the same value of γ. A rigorous
test of this prediction is difficult, since the JG relaxation is

Figure 4. Density scaling plots of the relaxation times for the α (filled
symbols) and JG (open symbols) processes. Only the former
superpose; the solid line is eq 8 with γ = 1.94 (which is also shown
in Figure 3).

Figure 5. Fitted spectra for which τα is constant (= 17.8 ms); as
indicated, τJG increases with increasing temperature. There is also a
change in the relative dielectric strength of the two processes. The
spectra were displaced vertically for clarity.

Figure 6. Loss spectra of a lower molecular weight PMMA (Mw = 402
Da) at two different temperatures and pressures, for which the stretch
exponent in eq 4 is the same, βKWW = 0.52 ± 0.01. The lower
temperature spectrum was shifted by 0.05 decades to lower frequency
and by a factor of 0.93 in intensity, in order to superpose the α peaks.
The vertical arrows denote the position of the maximum in the JG
peaks; their frequencies differ by 1.3 decades, despite the isochronal
superpositioning of the α dispersions. Solid lines are the fits of eq 3,
with the individual contributions indicated by the dotted lines.

Table 1. Scaling Exponent Dependence on Molecular
Weight of PMMA

Mw (Da) γ (eq 1) reference

302 3.7 39
402 3.2 39
1040 2.8 39
1970 1.94 this work

150000 1.8 40
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usually measured below the glass transition temperature,
whereby the α relaxation is too slow for accurate character-
ization. (It is presently unknown if scaling of the α relaxation is
valid in the glassy state.) Moreover, τJG for a glass is not a
unique function of density, as seen in aging experiments42,43

and for pressure-densified glasses;23−25 these experiments have
shown that increasing the density of a glass can cause the JG
process to become either faster or slower. Such behavior
renders untenable the hypothesis that τJG conforms to density
scaling in equivalent fashion as τα.
Thus, to test the hypothesis that τα and τJG follow eq 1 with a

common γ, we carried out measurements on a material for
which both processes can be measured above Tg. We find that
while good superpositioning of τα for low molecular weight
PMMA can be achieved, τJG deviate from the scaling. At
constant τα higher pressures are associated with greater
separation in frequency of the two relaxation peaks. Given
the conformance of PMMA to isochronal superpositioning
(βKWW constant for constant τα

29,30), this result indicates a
departure from the τJG calculated from eq 2.
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