
Volume and Temperature Dependences of the Global and Segmental
Dynamics in Polymers: Functional Forms and Implications for the
Glass Transition

K. L. Ngai

Naval Research Laboratory, Code 6807, Washington D.C. 20375-5320

R. Casalini

George Mason University, Chemistry Department, Fairfax, Virginia 22030

C. M. Roland*

Naval Research Laboratory, Chemistry Division, Code 6120, Washington D.C. 20375-5342

Received January 2, 2005; Revised Manuscript Received March 7, 2005

ABSTRACT: Previously, from dielectric relaxation measurements obtained for various temperatures T
and pressures P on polypropylene glycol, 1,4-polyisoprene, and poly(oxybutylene) [Roland, C. M.; Casalini,
R.; Paluch, M. J. Polym. Sci. Polym. Phys. Ed. 2004, 42, 4313. R. Casalini and C. M. Roland,
Macromolecules, 2005, 38, 1779], both the primary R-relaxation time τR and the normal mode relaxation
time τn were shown to yield master curves when plotted versus the quantity T-1V-γ . Moreover, the value
of γ is the same for the two processes (here V is the specific volume and γ is a material-specific constant).
Such a result appears to be consistent with an assumption underlying models for polymer viscoelasticity
that the friction coefficient governing motions over large length scales can be identified with the local
segmental friction coefficient. However, notwithstanding the superpositioning obtained using the same
value of γ, τR and τn differ in their dependences on either the product variable T-1V-γ , V at constant T,
or T at constant P. In each case, the difference is more pronounced at longer τR. Such behavior is
inconsistent with the Rouse and tube models. However, these differences in the respective dependences
of τR and τn can be accounted for quantitatively by the coupling model. The framework of the solution of
the problem supports the proposal that the temperature and volume dependences of molecular mobility,
which trigger the glass transition, do not originate from the primary R relaxation. Instead, they have
their origin in the primitive relaxation of the coupling model.

1. Introduction

It has been discovered1-4 that in many small mol-
ecules and polymeric glass-formers, the logarithm of the
primary (or R) relaxation time, log(τR), obtained by
dielectric measurements for various temperatures T and
pressures P, yields a master curve when plotted versus
the quantity T-1V-γ . Here V is the specific volume and
γ is a material-specific constant, found to vary over a
broad range 0.14 e γ e 8.5 for the glass-formers
investigated to date. By combining the dielectric results
for any of these glass-formers with the corresponding
equation of state (PVT data), the volume-dependence
of the relaxation times can be obtained. Until recently,
this type of analysis for polymers has been carried out
only for the segmental relaxation (i.e., the primary R)
process.5-8 Recently, the analysis was extended to the
polymer chain dynamics (i.e., the dielectric normal
mode) for type-A polymers, polypropylene glycol9 (PPG),
1,4-polyisoprene9 (PI), and polyoxybutylene (POB).10

The normal mode relaxation times (strictly speaking,
the longest normal mode relaxation times, τn) superpose
to a single master curve when plotted against T-1V-γ,
using the same value of γ as for the segmental relax-
ation times, τR. The result that τR and τn are functions
of the same product variable is written explicitly as

and

The equivalence of the scaling parameter for the two
processes suggests that the factors underlying the
dynamics must be related. At first sight, this equiva-
lence even seems to suggest that the normal mode and
the segmental modes might have exactly the same
temperature and volume dependences, consistent with
the assumption of thermorheological simplicity underly-
ing some models of polymer dynamics.11 However, this
inference cannot be correct because data for many
polymers have revealed unambiguously that the seg-
mental and chain modes have different temperature11-22

and volume (or pressure) dependences.23,24 Thus, the
chain modes are not governed by the friction coefficient
associated with local segmental motion. The fact that
the segmental and chain modes have different temper-
ature dependences has been known for many years.
First demonstrated by creep compliance data by Plazek
and co-workers on several polymers, including polysty-
rene, atactic polypropylene, and poly(methylphenyl-
siloxane), it has subsequently been confirmed by others
using various techniques.13,16,19,25 It was also shown to
be the case specifically for PPG,15,25 PI,16 and POB,26

the polymers of interest herein. The immediate effect
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is a breakdown of thermorheological simplicity, i.e.,
failure of time-temperature superposition of viscoelas-
tic data.12,17,18,24,25 Less well-known is the fact that the
segmental and chain modes have different pressure (or
volume) dependences. Again, by combining the dielectric
data for the two modes with equation of state (PVT)
data,9 the volume-dependence of their relaxation times
τn and τR were obtained. Shown in Figures 1 and 2 are
the results for PPG and PI with molecular weight M )
4.0 and 11.1 kg/mol, respectively.22,23 The measurements
were carried out at the indicated temperatures at
varying pressures. The stronger specific volume depen-
dence of τR than τn is brought out clearly by comparing
log(τn) with log(τR) after applying a vertical shift to the
latter to make the curves coincide at shorter times.
From the trends seen in Figures 1 and 2, the difference
in volume dependences is expected to be greater at
longer τR and τn, were such data available. This trend
is similar to that actually seen in comparing the
temperature dependences of τR and τn.14,17

It is paradoxical that τn and τR are functions of the
same quantity, T-1V-γ, yet have different T-1V-γ-, T-
and V-dependences. The purpose of this paper is to
resolve this conundrum by applying the coupling model
(CM).27-32 This solution of the problem has the implica-
tion that the origin of the temperature and volume
dependences of molecular mobility lies in the primitive
relaxation time τ0 of the CM. The dependences are
magnified in τR by the many-molecule dynamics, which
generate the R-relaxation from the primitive relaxation.
In the final part of this paper, we describe additional
evidence, linking the Johari-Goldstein (JG) relaxation
to the primitive relaxation of the CM.

2. The Coupling Model Solution
A quantitative explanation by the CM of the stronger

temperature and pressure dependences of τR than τn has

been detailed elsewhere.30,31 The CM is a general
approach to treat relaxation of interacting many-body
systems. The microscopic details of relaxation in a
coupled many-body system are complicated; neverthe-
less, these many-body dynamics must originate from
relaxation or attempts to relax by individual units.
Therefore, in deriving the CM, consideration starts with
the independent or primitive relaxation rate, τ0

-1, of
individual units (e.g., molecules or polymer chain seg-
ments). The dynamic constraints of a coupled many-
body system prevent the attempts of all relaxing units
to be simultaneously successful, resulting in the coin-
cident existence of both fast and slowly relaxing mol-
ecules, i.e., heterogeneous dynamics. However, when
averaged, the effect is equivalent to the slowing down
of τ0

-1 by another multiplicative factor. This factor must
be time dependent because dynamics is not stationary
but evolves with time. The time-dependent rate W(t) has
the product form, τ0

-1f(t), where f(t) < 1. In particular,

with 0 e n < 1, so that the solution of the averaged
correlation function φ from the rate equation, dφ/dt )
-W(t)φ, yields the empirical Kohlrausch stretched ex-
ponential function,

Here n is the coupling parameter of the CM and âK
() 1 - n) is the fractional Kohlrausch exponent. The
stronger the coupling of the relaxing units in the many-
body system, the larger is the length-scale of the
dynamic heterogeneity, and thus the more retarded is
the primitive rate; these all correspond to a larger
coupling parameter. The time-dependent rate τ0

-1(ωct)-n

Figure 1. Segmental (2) and normal mode (4) relaxation
times for PPG as a function of the specific volume. The
measurements22 were carried out at the indicated temperature
at varying pressures. Open circles represent segmental relax-
ation times shifted vertically to reveal their stronger volume
dependence in comparison to the normal mode.

Figure 2. Segmental (b) and normal mode (2) relaxation
times for PI as a function of the specific volume. The measure-
ments23 were carried out at the indicated temperature and at
varying pressures. Open circles represent segmental relaxation
times shifted vertically to show their stronger volume depen-
dence in comparison to the normal mode.

W(t) ) τ0
-1(ωct)

-n (3)

φ(t) ) exp[-(t/τ)1-n] (4)
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also leads immediately to an important relation between
τ and τ0 of the CM

where tc is identified by tc ) (1 - n)-(1/n)/ωc. Many-body
dynamics cannot start instantly, and tc marks the
crossover of the correlation function from exp(-t/τ0) to
the Kohlrausch function. This transition transpires over
a range of t for which the derivatives are continuous.
The magnitude of tc depends on the coupling strength
of the many-body system but is insensitive to temper-
ature.28 Solutions of simple coupled systems27 support
the premise of the CM.

A major application of the CM is describing the
properties of the primary R-relaxation of glass-formers.
From neutron scattering experiments and molecular
dynamics simulations of polymeric and small molecule
liquids at short times,28 the Kohlrausch function

is found not to hold for times shorter than approxi-
mately 2 × 10-12 s and is replaced by the linear
exponential time dependence of the primitive relaxation.
Note that the transport properties, including viscosity
and conductivity, assume the Arrhenius temperature
dependence of the primitive relaxation when the relax-
ation time becomes less than 2 ps.33,34 These properties
indicate that tc is approximately equal to 2 ps for small
molecule and polymeric glass-formers. Because we shall
consider relaxation of coupled normal modes of polymer
chains, described by their own primitive relaxation time,
coupling parameter, and crossover time, the suffixes R
and n are added to all quantities related to the R-re-
laxation and normal mode, respectively. The relation
between the R-relaxation time τR and its primitive
relaxation time τR0 (eq 5) is now written as

Only the slowing down of the R-relaxation by the many-
body dynamics is accounted for by eq 7, but it implies
that if τR is a function of the product variable T-1V-γ

(as found experimentally (eq 1)1-4,8-10), then τR0 must
also be a function of the same variable T-1V-γ. This
turns out to be an important point, even though the CM
does not predict the dependence of either τR or τR0 on
T-1V-γ. With time being a natural variable, the fact that
τR0 precedes τR implies that the dependence of molecular
mobility on T-1V-γ originates from τR0. That is, the
dependence of τR on T-1V-γ is not original but derived
from that of τR0 (via eq 7) by raising it to the superlinear
power 1/(1 - nR). Changes in volume and temperature
are related to changes in pressure and entropy because
of the thermodynamic relation, (∂S/∂P)T ) -(∂V/∂T)P.
Hence, the same conclusion applies to the dependences
of τR0 and τR on pressure and entropy. Following the
usual practice of polymer viscoelasticity,11,24,32 we define
a monomeric friction coefficient úR(T, V) that contains
the dependences of τR(T, V) on T and V, and a primitive
monomeric friction coefficient ú0(T, V) for τR0(T, V). From
eq 7, the relation between the two friction coefficients
is

The coupling parameter nR has been determined for
PPG (Mw ) 4000 g/mol, as herein)35 and for a high
molecular weight PI36 by fitting the frequency-depend-
ent dielectric loss data by the one-sided Fourier trans-
form of the Kohlrausch-Williams-Watts function. The
results for τR in the range 10-5-102 s are

for PPG and

for PI.
The normal modes of polymer chains are intermo-

lecularly coupled if the molecular weight is comparable
or exceeds the critical molecular weight for entangle-
ments. For the PI sample of Figure 2, Mw ) 11.1 kg/
mol, which is almost a factor of 2 larger than the
entanglement molecular weight.9 The PPG sample has
a molecular weight equal to 4.0 kg/mol, with coupling
between the chains caused by transient linkages of
chain ends via hydrogen bonding.15 Although the inter-
actions between chains are different (entanglement
interaction in PI versus hydrogen bonding interaction
in PPG), the many-chain dynamics can be taken into
account by the CM. Description by the CM15,21,30,31 starts
with the primitive normal mode relaxation rate (τn0)-1,
a coupling parameter nn of the normal modes, and a
crossover time tnc that is about 1 ns for entanglement
couplings.28 The slowed chain relaxation time τn is given
by

(τn0)-1 is identified with the relaxation rate of the longest
wavelength mode of the Rouse model, (τR)-1, because
the Rouse modes stem from relaxation dynamics of a
free chain without any chain-chain coupling. It follows
that τn0 has the well-known M2.0-dependence of the
Rouse model. For this reason, in the framework of the
CM, the friction coefficient of the Rouse modes is the
same as the primitive monomeric friction coefficient
ú0(T, V) for τR0(T, V).30 Thus, in the CM, the Rouse
modes, the entangled chain modes, and the local seg-
mental mode each have different friction factors. This
feature delineates the CM from all other models of
polymer viscoelasticity11,12 in which a single friction
factor, namely úR(T, V) of τR(T, V), governs these three
modes of motion.

Although all primitive relaxation modes in the CM
have the same friction coefficient, i.e.,

this is not true for modes having a nonzero coupling
parameter. From eqs 7 and 11, it follows that

and from eqs 10 and 11

In general, τR and τn have different friction coefficients
because their respective coupling parameters, nR and
nn, are different. The molecular weight dependence of
τn has the M2/(1-nn)-dependence, a result that follows

nR ) 0.45 (9a)

nR ) 0.47 (9b)

τn ) [(tnc)
-nnτn0]

1/(1-nn) (10)

τR0(T, V), τn0(T, V), τR(T, V) ∝ ú0(T, V) (11)

τR(T, V) ∝ [ú0(T, V)]1/(1-nR) (12)

τn(T, V) ∝ [ú0(T, V)]1/(1-nn) (13)

τ ) (tc
-nτ0)

1/(1-n) (5)

φR(t) ) exp[-(t/τR)1-nR] (6)

τR ) [(tRc)
-nRτR0]

1/(1-nR) (7)

úR(T, V) ) [ú0(T, V)]1/(1-nR) (8)
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from eq 10 and the M2-dependence of τR for the Rouse
modes. PPG for M up to 4000 g/mol is not entangled, as
evidenced by published viscoelastic data,37 but the
observed molecular weight dependence of τn is M2.95,
significantly stronger than the M2.0-dependence ex-
pected if the normal mode is governed by Rouse dynam-
ics. This enhanced molecular weight dependence comes
from many-chain dynamics involving transient linkages
of the chain ends via hydrogen bonding. The CM is a
general framework for many-chain dynamics, and eq 13
remains valid for PPG. Hence, by comparing the pre-
dicted M2/(1-nn)-dependence of τn from eq 13 and the
observed M2.95-dependence, the coupling parameter of
the normal modes of PPG is given by15

The PI sample23 with number-averaged molecular weight
of 10 600 is barely entangled, and hence its τn lies
between the M2.0-dependence of Rouse chains and the
M3.7-dependence of fully entangled PI chains, as ob-
served by dielectric measurements.38,39 Therefore, for
this PI, the normal mode coupling parameter nn falls
between 0 for Rouse chains and nn ) 0.46 for fully
entangled chains (i.e., M . Mc), the latter obtained from
the experimental M3.7-dependence using the theoretical
M2/(1-nn)-dependence.31

By comparing eq 9a with eq 14 for PPG and eq 9b
with the estimate of nn given above for PI, it is clear
that the value of nR is larger than nn for both polymers.
Then, eqs 12 and 13 lead to the conclusion that τR has
stronger temperature and volume dependences than τn.
This result, τR having a stronger temperature depen-
dence than τn, explains quantitatively the experimental
data, not only of PPG16 and PI17,24 but also of other
polymers, both entangled and unentangled.13,17,18,19 By
the same line of reasoning and using eqs 12 and 13, the
stronger volume dependence of τR is predicted to exceed
that of τn, in accord with the experimental findings9,23

shown in Figures 1 and 2.
From eq 12 and the experimental result that τR is a

function of the product variable, T-1V-γ, it follows that
ú0(T, V) also is a function of T-1V-γ over the range of τR
for which nR is a constant. And by eq 13, τn is also a
function of T-1V-γ, having the same exponent γ as in
eq 12. The dependences of τR and τn on the product
variable T-1V-γ are written explicitly as

and

It is clear from these two equations that τR and τn are
functions of the same product variable T-1V-γ , although
the functions are not the same, because in general, nR
> nn. Both log(τR) and log(τn) data for various T and P
yield a master curve when plotted versus the product
variable T-1V-γ for the same γ. Thus, the apparent
conundrum is resolved when the segmental and chain
dynamics are described within the framework of the
CM.

Like τR and τn, their corresponding friction coef-
ficients, úR and ún, are functions of the product variable
T-1V-γ with the same value of γ. According to eqs 15

and 16, úR(T-1V-γ) and ún(T-1V-γ) are different func-
tions of Y ≡ T-1V-γ , but they are related by

With nR and nn known, this relation is tested against
the log τR(T-1V-γ ) and log τn(T-1V-γ ) data of PPG in
Figures 3 and 4. The tests of PPG are carried out for
two representative temperatures and shown separately
for the sake of clarity. From the data of τR(T-1V-γ ), we
first determine the shift factor aRY ≡ τR(Y)/τR(Yref), where
Y ≡ T-1V-γ and Yref is a reference value. It follows from
eq 17 that the shift factor anY ≡ τn(Y)/τn(Yref) of the
normal mode can be calculated by the equation

The calculated results of anY with nR ) 0.45 for PPG
(eq 9a), assuming nR is constant for the entire range of
the τR data shown, are presented by the open squares
connected by the solid lines in Figures 3 and 4. A
vertical shift is then applied to the calculated anY and
the results (open squares connected by the dashed line)
are compared with the log(τn(Y)) data (closed triangles).
There is good agreement in the region where τR(Y) is
longer than 10-4 s. However, the predicted values of
τn(Y) tend to be longer than the data for τR(Y) < 10-4 s.
The assumption that nR has a constant value usually
breaks down at shorter τR(Y), which is an empirical
result found by broadband dielectric relaxation spec-
troscopy of glass-formers.40,41 Therefore, in this region,
the departure of the calculated temperature dependence

Figure 3. Relaxation times of PPG at T ) 283 K from Figure
1 as a function of Y ≡ T-1V-γ, with γ ) 2.5: segmental
relaxation times (b) and normal mode relaxation times (2).
The shift factors anY for the normal mode calculated from the
segmental relaxation data using nR ) 0.45 (eq 9a) and nn )
0.32 (eq 14) are also shown (0 connected by solid line). A
vertical upward shift is then applied to the calculated anY
(0 connected by dashed line) to compare with the temperature
dependence of the log(τn(Y)) data.

(1 - nn) log[ún(T-1Vγ)] ) (1 - nR) log[úR(T-1Vγ)] )

log[ú0(T
-1Vγ)] (17)

log(anY) )
(1 - nR)

(1 - nn)
log(aRY) (18)

nn ) 0.32 (14)

τR(T-1V-γ) ) fR([ú0(T
-1V-γ)]1/(1-nR)) (15)

τn(T-1V-γ) ) fn([ú0(T
-1V-γ)]1/(1-nn)) (16)
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of log(τn(Y)) from the data is possibly due to a decrease
of nR, not taken into account in Figures 3 and 4.

The situation for the PI data is different. As discussed
before, nn of the PI sample cannot be directly deter-
mined. It is certainly smaller than 0.47 (eq 9b) because
the sample is barely entangled. This fact alone, that nn
< nR, accounts for the stronger volume dependence
(Figure 2) or greater Y ≡ T-1V-γ dependence (Figure 5)
of the segmental relaxation in comparison to those of
the normal mode. We can determine nn by carrying out
the same calculation via eq 18 as done for PPG in
Figures 3 and 4. Now, nn is treated as a floating
parameter, and its value is determined by the best fit
to the weaker Y-dependence of the normal mode from
the stronger Y-dependence of the segmental mode. This
fit in Figure 5 yields nn ) 0.41. From this value and τn
∝ M2/(1-nn), we deduce that the molecular weight depen-
dence of τn is M3.4, which is consistent with the observed
transition from the M2.0 to the M3.7-dependence39,40 at
the molecular weight 10 600 of the PI sample.

In a very recent work,10 the relaxation times of the
normal mode and the local segmental mode for a POB
sample with Mn ) 4800 g/mol and Mw/Mn ) 1.10 were
again found to be functions of the product variable Y ≡
T-1V-γ with γ ) 2.65, but they are not governed by the
same local friction coefficient, as revealed by the differ-
ences in their dependences on T or V as τR becomes
large. In an ambient pressure dielectric study of POB,27

the loss peaks for the normal mode for samples with
Mn ) 4500 and 1810 g/mol were resolved and their
respective frequencies located at approximately 300 Hz
and 4 kHz. These two data, when used to determine nn
from the molecular weight dependence τn ∝ M2/(1 - nn),
gives nn ≈ 0.30. (Note that for POB samples with Mn )

970 and 460 g/mol, the normal modes were not re-
solved27 and thus cannot be used to determine nn.) This
estimate of nn ≈ 0.30 is consistent with the fit of the
dielectric loss spectrum of the 4800 g/mol sample at
246.6 K and 210.4 MPa,10 shown in Figure 6 by the sum
of one-sided Fourier transforms of two KWW functions
with nn ) 0.30 for the normal mode and nR ) 0.41 for
the local segmental mode. The deviations from the fit
at low frequencies is due to ionic conduction and at high
frequencies from contributions of a secondary relaxation.
In fitting the data, we have considered only the longest
normal mode and ignored the much smaller contribution
to the dielectric loss from the higher-order normal
modes.43 The 4800 g/mol sample has a polydispersity
Mw/Mn ) 1.10, which contributes to the breadth of the
loss peak. Thus, the value of nn deduced from the
dielectric spectrum can be smaller than the value of 0.30
deduced from the molecular weight dependence.

The shift factors, anY , calculated from this value of
nR (assumed to be constant for the entire range of the
data) are displayed as the open squares connected by a
solid line in Figure 7. By applying a vertical shift to
these data points (open squares connected by the dashed
line), a comparison is made to the log(τn(Y)) data (closed
triangles). There is good agreement in the region where
τR(Y) is longer than 10-4 s. The discrepancy with the
predicted values of τn(Y) for τR(Y) < 10-4 s is possibly
due to nR not having a constant value as assumed. We
have mentioned in connection with the fit to the
dielectric spectrum that nn may be less than 0.30
because of polydispersity. A smaller nn is still consistent
with the observed weaker T-1V-γ -dependence of the
normal mode compared with that of the local segmental
relaxation. The fit of the calculated values of τn to the

Figure 4. Relaxation times of PPG at T ) 293 K as a function
of Y ≡ T-1V-γ , with γ ) 2.5: segmental relaxation time (b)
and normal mode relaxation times (2), The shift factors anY
for the normal mode calculated from the segmental relaxation
data using nR ) 0.45 (eq 9a) and nn ) 0.32 (eq 14) are presented
(0 connected by solid line). A vertical upward shift is then
applied to the calculated anY (0 connected by dashed line) to
compare with the temperature dependence of the log(τn(Y))
data.

Figure 5. Segmental (b) and normal mode (2) relaxation
times for PI as a function of Y ≡ T-1V-γ, with γ ) 3.0. The
measurements24 were carried out under ambient pressure at
varying temperatures. The shift factors anY calculated with nR
) 0.47 (eq 9b) and nn ) 0.41 are presented (0 connected by
solid line). A vertical upward shift is then applied to the
calculated anY (0 connected by dashed line) to compare with
the temperature dependence of the log(τn(Y)) data.
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data is still reasonably good for nn as low as 0.26.
Parenthetically, we note that the POB sample corre-
sponds to 67 repeat units per chain, equal to that of the
PPG, and because the coupling of the normal modes in

both cases arises from hydrogen bonding at chain ends,
it is unsurprising that the value of nn of POB is close to
that of PPG (eq 14). The slightly smaller nR for POB
compared with PPG is possibly due to the flexible ethyl
side chains in POB, which may mitigate intermolecular
constraints and hence reduce the segmental relaxation
coupling parameter.

3. Implications for the Mechanism of Glass
Transition

The main purpose of the present work is to explain
the experimental finding that although τR and τn are
functions of the same product variable Y ≡ T-1V-γ with
the same γ, the functions per se are not the same. The
proffered explanation accounts quantitatively for the
difference between the two functions. The key eqs 7, 11,
12, and 17 used above involve the primitive relaxation
time τR0 and its friction coefficient ú0. From the experi-
mental result that τR, and thus its friction coefficient
úR, are functions of T-1V-γ, these equations lead to the
ancillary result that τR0 and its friction coefficient ú0 are
also functions of T-1V-γ. Because the primitive relax-
ation transpires earlier than the R-relaxation, the
dependences of molecular mobility on volume and
temperature cannot originate from the R-relaxation but
from the primitive relaxation, as exemplified by the
T-1V-γ -dependences of its relaxation time τR0(T-1V-γ)
and friction coefficient ú0(T-1V-γ). This conclusion has
an important implication for the mechanism of the glass
transition. Conventional theories of the glass transition,
including free volume models and configurational en-
tropy models, consider only the R-relaxation, and the
latter is where the dependences of molecular mobility
on temperature, pressure, volume, and entropy are
assumed to originate. The CM fosters a different
viewpoint; the dependence of τR on T-1V-γ is derived
from that of τR0 according to the relation,

which is eq 7 with the dependence on T-1V-γ written
out explicitly. Note that tRc equals about 2 ps for
molecular and polymeric glass-formers.28,33 The opera-
tion of raising τR0(T -1V -γ) to the power (1 - nR)-1 and
obtaining the dependence of τR on T-1V-γ arises from
the many-body relaxation dynamics and consequent
slowing down of the average relaxation rate. Because
the power (1 - nR)-1 is superlinear, the resulting T-1V-γ

-dependence of τR is stronger than that of τR0. Neverthe-
less, the dependence of τR on T-1V-γ is not fundamental,
but only a consequence of τR0(T-1V-γ). There is another
experimental result supporting τR0 as the origin of the
dependence of molecular mobility on T-1V-γ . This is
discussed in the following section.

4. Evidence of the Primitive Relaxation
Because the analysis herein is based on consideration

of the primitive relaxation time τR0, it is worthwhile to
show direct evidence of it from experiments, particularly
for polyisoprene, PPG, and POB. Secondary relaxations
are commonly found in polymers, although some involve
intramolecular degrees of freedom and thus bear no
relation to the R-relaxation. An example of these trivial
secondary relaxations would be the isolated motion of
a pendant group on a polymer chain. However, there is
a special kind of secondary relaxation that involves all
atoms in the molecule or the entire repeat unit for

Figure 6. Representative dielectric loss data for POB at T )
246.6 K and P ) 201.4 MPa showing the fits to the normal
mode (short dashed line) and the segmental peak (long dashed
line) of the one-sided Fourier transform of the KWW function
with nn ) 0.30 and nR ) 0.41. The sum of the losses is shown
by the solid line.

Figure 7. Relaxation times of POB at ambient pressure as a
function of Y ≡ T-1V-γ , with γ ) 2.65: segmental relaxation
time (b) and normal mode relaxation times (2), Shift factors
anY for the normal mode were calculated from the segmental
relaxation data using nR ) 0.41 and nn ) 0.30 (0 connected
by the solid line). A vertical upward shift is then applied to
the calculated anY (0 connected by the dashed line) to compare
with the temperature dependence of the log(τn(Y)) data.

τR(T - 1V - γ) ) [(tRc)
-nRτR0(T

- 1V-γ)]1/(1-nR) (19)
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polymers such as 1,4-polybutadiene45 and polyisoprene36

(not including the very fast rotation of the methyl
group). In the research community of nonpolymeric
glass-formers, these secondary relaxations are some-
times called Johari-Goldstein relaxations. JG second-
ary relaxations are potentially the originator of the
R-relaxation, in the manner of the primitive relaxation
of the CM. The CM primitive relaxation time τR0
calculated from the parameters of the R-relaxation via
eq 7 turns out to be approximately the same as the
most probable relaxation time of the JG secondary
relaxation, τâ, in many glass-formers,43-49 including
polyisoprene.36

Another experimental evidence for a close connection
between the two processes is the size of their jump
angles. Multidimensional NMR50,51 experiments have
shown that the dynamically heterogeneous molecular
reorientations of the R-relaxation (i.e., the primitive
relaxation in the coupling model) occur by relatively
small jump angles, which have an exponential time
dependence. Furthermore, from one- and two-dimen-
sional 2H NMR studies,52 the secondary relaxation in
toluene-d5 and polybutadiene-d6 is seen to also involve
angular jumps of similar magnitude for temperatures
above Tg. This similarity in size of the jump angles
supports a connection between these two relaxation
processes.

Because the R-relaxation time τR is in general pres-
sure dependent and non-Arrhenius in the equilibrium
liquid state, it follows from eq 7 that the primitive
relaxation time τR0 is also pressure dependent and non-
Arrhenius. Dielectric measurements at elevated pres-
sure of JG secondary relaxations have found that, at
constant temperature in the equilibrium liquid state,
τâ is indeed pressure (and hence volume) dependent.
Examples include dipropyleneglycol dibenzoate,47 ben-
zoin-isobutyl ether,53 dimer and trimers of propylene
glycol54 (i.e., lower molecule versions of PPG), sorbitol,
and xylitol.55 The dependences of τR0 and τâ on temper-
ature and pressure are approximately the same, i.e.,

These various experimental facts indicate that the
primitive relaxation of the CM can indeed be identified
with the JG relaxation.

5. Conclusions
The coupling model accounts for the stronger volume,

V, and temperature, T, dependences of the segmental
R-relaxation time τR in comparison to those of the
normal mode relaxation time τn in PPG, PI, and POB.
It further shows how both relaxation times can be a
function of the product variable T-1V-γ , notwithstand-
ing that the dependence of τR on this variable is also
stronger than that of τn. For PPG and POB, we can
quantitatively account for the difference between the
two T-1V-γ -dependences without adjustable param-
eters.

Related to this explanation is the additional result
that the dependence of τR on T-1V-γ is not original but
derives from that of the primitive relaxation of the
coupling model τR0(T-1V-γ). In other words, the tem-
perature, pressure, volume, and entropy dependences
of molecular mobility originate from the primitive
relaxation and become magnified for the R-relaxation
because of many-body dynamics. There is support for

this result from the observed volume and temperature
dependences of the secondary relaxation time in the
equilibrium liquid state, which is the same as τR0 both
conceptually and experimentally. Because the secondary
relaxation or the primitive relaxation transpire long
before the R-relaxation, this indicates that the temper-
ature, volume, and entropy dependences of molecular
mobility originate from that of the secondary relaxation
time or the primitive relaxation time. The origin of the
dependence of τâ or τR0 on the variable TVγ is an open
question.
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