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ABSTRACT: A theoretical model for the chain modes’ contribution to the depolarized light scattering
(DLS) spectrum of polymers is developed. It is shown that the frequency dependence of the DLS
susceptibility spectrum is similar to that of the shear loss modulus. Specifically, the contribution of chain
modes to the DLS spectrum is composed of a series of Lorentzians (single-exponential processes) having
the same amplitude. The relaxation time associated with each mode follows the Rouse prediction, but
with a value equal to one-half the mechanical Rouse time. DLS spectra of poly(dimethylsiloxane) melts
with different molecular weights have been analyzed in the framework of the model. Reasonable agreement
on both qualitative and quantitative levels is observed. In particular, the relaxation time of the longest
Rouse mode extracted from DLS spectra is consistent with that from viscosity measurements.

I. Introduction

Polymer dynamics includes many relaxation pro-
cesses, starting from the fast conformational fluctua-
tions (fast dynamics), followed by secondary and seg-
mental relaxations, and finally the chain dynamics.
Among these, chain relaxation is, of course, unique to
polymers, defining their macroscopic viscoelastic be-
havior. The main theoretical description of the chain
dynamics is based on the Rouse/Zimm model for un-
entangled chains and the reptation model for entangled
chains.1 Chain dynamics are traditionally analyzed
using macroscopic mechanical measurements. Poly-
(dimethylsiloxane) (PDMS) is a prototypical flexible-
chain polymer, whose thermal stability and sluggish
crystallization make it an ideal subject for viscoelastic
studies. Transient2 and dynamic mechanical3 measure-
ments on linear PDMS have a long history, while more
recently the rheology of branched PDMS has been
investigated.4 Good agreement with predictions of the
Rouse model has been found in these studies.

More recently, neutron scattering experiments pro-
vided valuable microscopic information on chain relax-
ation.5 In particular, analysis of neutron scattering data
for PDMS melts6 and solutions7 also reveals good
agreement with predictions of the Rouse/Zimm model
even on a microscopic scale. Dielectric spectroscopy can
also be used for analysis of the chain dynamics for those
(few) polymers having a dipole moment accumulating
parallel to the chain. However, most of the polymers do
not fall into this category, and it is not possible to study
their chain dynamics by dielectric spectroscopy. For
example, PDMS only has a substantial dipole moment
transverse to the chain, and as a result dielectric

spectroscopy can be used to probe only the local seg-
mental dynamics.8

Recently, chain relaxation was observed in depolar-
ized light scattering (DLS) spectra of PDMS.9 However,
the mechanism of light scattering by chain motion is
not clear. Two existing models give contradictory pre-
dictions for the DLS spectrum: (i) Ono et al.10 calculated
the DLS due to chain relaxation and found that the
spectrum is identical to the Rouse/Zimm model predic-
tion for the shear loss modulus. (ii) On the other hand,
Wang et al.11 predicted that the DLS spectrum is
proportional to the mechanical loss compliance. Thus,
two models predict different spectral shapes for the
chain contribution to the DLS. No comparison to ex-
perimental results in the Rouse regime has been made
for either model.

In this article, we present a theory that describes the
chain contribution to the DLS spectrum. It predicts that
the DLS susceptibility spectra in the Rouse model
should be quite similar to the shear loss modulus
spectrum; however, the characteristic relaxation time
is expected to be one-half the usual Rouse relaxation
time measured mechanically. Detailed analysis of ex-
perimental DLS spectra and viscoelastic measurements
on the same PDMS samples shows quantitative agree-
ment with the model predictions. Thus, DLS provides
a new method to investigate the chain dynamics, with
clear advantages: it can be used to investigate chain
dynamics at high frequency for all polymers and is
simpler than neutron spectroscopy. Traditional mechan-
ical methods cover a relatively small frequency range,
and dielectric spectroscopy can measure only specific
polymers that have a dipole moment accumulating
along the chain.

II. Theory

The general expression for the depolarized (VH) light
scattering intensity at frequency ω with scattering wave
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vector k for the simple geometry of the experiment is
given by

where R and â are the respective polarizations (R * â)
of the incident and scattered light (e.g., for the so-called
geometry II (Scheme 1) in terms of ref 12, R is z and â
is y), δεRâ is the local fluctuation of the dielectric tensor,
and A is a constant. Since we are interested in the
frequency dependence of IVH(k,ω), the exact value of this
constant, as well as some others to follow, is unessential
for our purposes. The right-hand side of eq 1 is deter-
mined by the space and time Fourier transform of the
dielectric susceptibility correlation function

The theory of depolarized light scattering in polymer
melts and solutions was considered in refs 10-11 (see
also ref 12 for a review), but the results are controver-
sial. Reference 10 considered the forward DLS from
dilute solution of optically anisotropic flexible macro-
molecules, the latter described by Rouse dynamics. It
was found that the spectrum is the sum of equally
weighted Lorentzians, corresponding to multiple Rouse
modes. Such a spectrum corresponds to the light scat-
tering susceptibility ø′′(ω) ∝ I(ω)/[n(ω) + 1] ∝ ω1/2,
having the same power law as for the shear modulus
G′′(ω) in the Rouse regime (where n(ω) + 1 )
[1 - exp(-hω/kT)]-1 is the temperature Bose factor).
In ref 11, the depolarized light scattering in a viscoelas-
tic polymer liquid was analyzed. It was shown that, with
some approximations, when the chain segmental reori-
entational rate is fast, the DLS spectrum becomes the
sum of the reorientational and imaginary parts of the
dynamic shear compliance, J′′(ω). The latter in the
Rouse regime is J′′(ω) ∝ G′′(ω)/(|G′′(ω)|2 + G′′(ω)|2). Thus,
these two models predict significantly different spectral
shapes for the chain contribution to DLS. This difference
may be connected to one of the approximations used in
ref 11, namely, the photoelastic, or Pockel’s, constant
p, which was assumed to be frequency independent.
However, if the Pockel’s constant is allowed to relax
(e.g., refs 13-15), the resulting spectrum would be
different.

Let us consider the depolarized light scattering spec-
trum in the regime of Rouse dynamics. We assume that
segments of the polymeric chain are characterized by a

polarizability tensor that has a rotational symmetry for
the segments. The anisotropic part of the polarizability
tensor, RRâ, can be written in the form

where B is a constant and a is a segment vector. The
constant B is proportional to R| - R⊥, where R| and R⊥
are the respective polarizability along and perpendicular
to the segment.1 The contribution of the segment
polarizabilities to the dielectric susceptibility can be
represented to a first approximation by the sum

where Rn(t) is the radius vector of the end of the nth
segment at a time t and RRâ(n,t) is its current polariz-
ability tensor. After substituting eq 3 into eq 4, one has

Since in our case R * â, we omit the second term in eq
3, and taking into account that an ) Rn+1 - Rn, we write
for long chains (changing sums over n and m to
integrals)

Experimental depolarized light scattering spectra of
bulk polymers and neat liquids do not have a recogniz-
able k dependence. In refs 11 and 16, the authors argued
this property of DLS could be ascribed to the smallness
of the correlation length lc in comparison with the
inverse value of the light scattering wave vector k-1, so
that klc , 1. Following this argument, we neglect the
exponential term inside the angle brackets in eq 6.
Strictly speaking, this corresponds to the case of forward
scattering, but as explained, it should also approxi-
mately describe the more general k geometry.

In the Rouse model, the respective dynamical equa-
tion is diagonalized by the transformation from the
vector RR

(n)(t) to Xp, the time-dependent amplitudes of
the “Rouse modes” of the polymer chain:

where N is the number of units in the chain. After
substitution of Rn(t) from eq 7 into eq 6, and integrating
over n and m, one has

Application of the Gaussian factorization approxima-
tion for the four-point correlation function in eq 8 results

Scheme 1. Scattering Geometry IIa

a The XY plane is the scattering plane. ki and kf is the
incoming and the final wave vectors, respectively, and θ is the
scattering angle. This geometry is used in connection with the
molecular theories.12

IVH(k,ω) ) A〈|δεRâ|2〉kω (1)

〈|δεRâ|2〉kω ) ∫∫d(t - t′) d(r - r′) ×
〈δεRâ(r,t)〈δεRâ(r′,t′)〉eik(r-r′)-iω(t-t′) (2)

RRâ ) B(aRaâ - 1
3
a2δRâ) (3)

δεRâ(r,t) ∝ ∑
n

δ(r - Rn(t))RRâ(n,t) (4)

IVH(k,ω) ∝

∫d(t - t′)e-iω(t-t′)∑
n,m

〈RRâ(n,t) RRâ(m,t′)eik(Rn-Rm)〉 (5)

IVH(k,ω) ∝ ∫∫∫dn dm d(t - t′)e-iω(t-t′) ×

〈∂RnR(t)
∂n

∂Rnâ(t)
∂n

∂RmR(t′)
∂m

∂Rmâ(t′)
∂m

eik(Rn-Rm)〉 (6)

Rn(t) ) X0(t) + 2∑
p)1

∞

Xp(t) cos(pπn

N ) (7)

IVH(ω) ∝

∫d(t - t′)e-iω(t-t′) ∑
p,q)1

∞

p2q2〈XpR(t) Xpâ(t) XqR(t′) Xqâ(t′)〉

(8)
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in products of two-point correlation functions:

In the Rouse model, the time correlation function of the
mode amplitudes is an exponential:

Here

and τp ) τ1/p2, τ1 ) úN2b2/3π2T is the Rouse relaxation
time for the pth mode, ú is a friction coefficient, and b
is the segment length. With this expression for the two-
point correlation function, the first and the third terms
on the right-hand side of eq 9 are equal to zero because,
for the depolarized scattering, they are nondiagonal in
vector indices R and â. The second term is equal to (T/
kp)2δpq exp(-2|t - t′|/τp). Substituting this expression
to eq 8, one gets

where τ′p ) τp/2. For the light scattering susceptibility,
ø′′(ω) ) IVH(ω)/(n(ω) + 1) ≈ ωIVH(ω)/T, approximating
the sum in eq 12 by an integral, square root behavior is
obtained:

Therefore, the DLS susceptibility spectrum has the
same frequency dependence in the Rouse regime as that
of the shear loss modulus,1 in agreement with the
results from ref 10. However, the relaxation time of each
mode from DLS is expected to be one-half of that from
mechanical measurements under the same conditions.

III. Experimental Section

Methyl-terminated PDMS was purchased from Gelest with
typical polydispersity ∼ 1.5-2.0.17 DLS spectra were measured
using a Raman spectrometer (JY T64000) for frequencies down
to ∼300 GHz and a tandem Fabry-Perot interferometer
(Sandercock model) for lower frequencies. All measurements
were done at 400 K. A detailed description of the measure-
ments can be found in ref 9. PDMS samples with molecular
weights equal to 162, 550, 1250, and 116 500 Da were
measured using a backscattering geometry (scattering angle
Θ ) 180°). Additionally, the spectra of PDMS samples with
molecular weight 550 and 116 500 Da were measured with
right angle (Θ ) 90°) and near forward (Θ ≈ 10°) scattering
geometries to verify the scattering wave-vector dependence of
the DLS spectrum.

Torsional creep viscosities were measured on two PDMS
samples (550 and 1250 Da) over a range of temperatures, using
a Plazek constant stress instrument.18 A parallel plate geom-
etry was employed, with sample diameter ) 50 mm and a gap

of 1-1.5 mm. Strain rates were in the range from 0.007 to 2
s-1. To minimize degradation and eliminate bubbles, the
sample was degassed while mounted in the rheometer, which
was then backfilled with nitrogen. Temperature control was
(0.1 deg.

IV. Results and Discussion

IV.1. Dependence of the DLS Spectrum on Scat-
tering Wave Vector. DLS spectra of PDMS measured
at different scattering wave vectors are presented in
Figure 1 as the imaginary part of the susceptibility,
ø′′(ω). The scatter of the data, due to the limited
statistics, increases at lower frequencies. The suscep-
tibility presentation allows direct comparison of the
scattering data to dielectric ε′′(ω) or mechanical G′′(ω)
loss spectra.19 For our analysis, it is essential to know
the relaxation times (characteristic frequencies) at this
temperature. The local segmental relaxation frequency
νR () ω/2π) estimated for PDMS (M ) 92 000 Da) from
quasi-elastic neutron scattering experiments is ∼50
GHz at T ) 400 K.9,20 The longest Rouse relaxation time
for PDMS with M ) 6462 Da at 373 K is estimated from
neutron spin echo (NSE) experiments, τ1 ) 2〈Rg

2〉/π2DR
∼ 30 ns (both Rg and DR are available in ref 6). This
corresponds to a characteristic frequency for the longest
Rouse mode, ν1 ) (2πτ1)-1 ∼ 0.005 GHz. Therefore,
the low-frequency tail of the scattering spectra falls in
the regime of chain relaxation, i.e., ν1 < ν < νR. Note
that the segmental relaxation time (frequency) de-
pends on molecular weight up to a certain M (∼104

Da),21 while the longest chain (Rouse) relaxation time
(frequency) scales with molecular weight as τ1 ∝ M2, for

〈XpR(t) Xpâ(t) XqR(t′) Xqâ(t′)〉 =
〈XpR(t) Xpâ(t)〉〈XqR(t′) Xqâ(t′)〉 +
〈XpR(t) XqR(t′)〉〈Xpâ(t) Xqâ(t′)〉 +

〈XpR(t) Xqâ(t′)〉〈Xpâ(t) XqR(t′)〉 (9)

〈XpR(t) Xqâ(t′)〉 ) T
kp

δRâδpq exp(-|t - t′|/τp) (10)

kp ) 6π2Tp2

Nb2
(11)

IVH(ω) ∝ ∑
p

∞ ∫dt e-iωt exp(-2|t|/τp) ) 2∑
p

∞ τ′p

1 + ω2τ′p
2

(12)

ø′′(ω) ∝ ∫dp
ωτ′p

1 + ω2τ′p
2

∝ ω1/2 (13)

Figure 1. (a) DLS susceptibility spectra of PDMS 550 at
different scattering angles: ([) 10°, (s) 90°, (0) 180°. (b) DLS
susceptibility spectra of PDMS 116 500 at different scattering
angles: (s) 90°, (0) 180°.
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molecular weights less than the entanglement molecular
weight.

The spectra in Figure 1 for neither sample show any
significant dependence on the scattering wave vector.
This result confirms that the DLS spectrum is insensi-
tive to k in the frequency range studied. In the light
scattering experiment, k is very small, and thus the
length scale probed is large compared to the spatial
extent of the segmental and internal chain modes.
Hence, the simplification used in the model (neglecting
the exponential term in eq 6) is justified. Of course, a k
dependence of the light scattering can exist in polymer
solutions due to scattering caused by the concentration
fluctuation associated with chain translational mo-
tions.12

IV.2. Analysis of DLS Spectrum: Rouse Modes
Contribution. Figure 2 shows the DLS spectra of
PDMS with molecular weight 162, 550, and 1250 Da.
The spectrum of the former shows behavior typical for

small molecule: The low-frequency tail increases as
ø′′(ω) ∝ ω. This spectrum can be approximated by a sum
of two Lorentzians

the first representing a microscopic process and the
second reflecting segmental relaxation. It is known that
at high temperatures these two relaxation processess
a microscopic (fast) process and an R-relaxation (slow)
processsexist in all liquids. The latter is called seg-
mental relaxation in polymers. The local segmental
relaxation usually has an extended, high-frequency tail
and cannot be described by a single Lorentzian function.
However, this stretching is usually insignificant at very
high temperatures. T ) 400 K is much higher than Tg,
which varies with the number-average molecular weight
(in daltons) as21 Tg(K) ) 147.0 - 5064/Mn. Characteristic
relaxation times of the two dynamic processes, obtained
from the fit to eq 14, are presented in Table 1.

In section II, we showed that the DLS susceptibility
spectrum for chain relaxation should have the same
frequency dependence as a loss modulus in the Rouse
regime. Specifically, the susceptibility spectrum is a sum
of a series of single-exponential relaxation modes of
equal amplitudes (eq 13). Figure 2 reveals an addi-
tional contribution near the lower frequency tail,
for PDMS with M ) 550 and 1250 Da. In ref 9, it was
shown that the stretching of the low-frequency tail
increases with molecular weight, approaching ω0.5 be-
havior at high molecular weight. According to ref 9,
the molecular weight associated with the smallest
Rouse mode in PDMS is estimated to be ∼560 Da.
Therefore, we expect that the spectrum of the sample
with M ) 550 Da includes only a single chain mode and

Figure 2. DLS susceptibility spectra of (a) PDMS 162 (0),
(b) PDMS 550 (O), and (c) PDMS 1250 (4). Thick lines
represent the fitting results; dashed lines represent the
component relaxation processes as noted; thin lines in (b) and
(c) represent the spectrum of PDMS 162, used for comparison.

Figure 3. Zero-shear-rate viscosities for PDMS with M )
1250 Da (O) and 550 Da (9). The activation energies calculated
from the respective slopes are indicated.

Table 1. Relaxation Times from DLS Spectra and
Viscosity Measurements

τ1 (ps)

M τm (ps) τR (ps) τ′1 (ps) DLSa η0

162 0.66 ( 0.05 2.0 ( 0.2
550 0.57 ( 0.05 2.9 ( 0.2 27 ( 3 54 ( 6 103 ( 9

1250 0.57 ( 0.05 3.9 ( 0.2 168 ( 13 336 ( 26 604 ( 11
a After adjustment by the required factor of 2 (see text).

ø′′(ω) ) ø′′micro(ω) + ø′′seg(ω) )
A1ωτm

1 + (ωτm)2
+

A2ωτseg

1 + (ωτseg)
2

(14)
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thus can be approximated by

The fit of eq 15 describes the spectrum well (Figure 2a),
giving relaxation time ∼2.9 ( 0.2 ps for the segmental
mode and 27 ( 3 ps for the chain (Rouse) mode (Table
1).

Assumption that the smallest Rouse subchain in
PDMS has molecular weight ∼560 Da leads to non-
integer number of Rouse modes in PDMS chains with
M ) 1250 Da. In a crude approximation we assume that
these chains have two Rouse segments, and the chain
relaxation spectrum includes two chain modes:

These two modes have the same amplitude and their
relaxation time follows the Rouse prediction: τ′P ) τ′1/
p2. Here τ′1 is the longest relaxation time, and τ′p is the
relaxation time of the pth Rouse mode. The free fit of
eq 16 describes the spectrum well (Figure 2b), giving
relaxation time τR ∼ 3.9 ( 0.2 ps for the segmental mode
and τ′1 ∼ 168 ( 13 ps for the longest chain (Rouse) mode
(Table 1). Thus, the model gives a good description of
the depolarized light scattering spectra, with the chain
relaxation contribution described by a summation of
Lorentzian functions having equal amplitude (The
amplitude of a Rouse mode is defined as the maximum
value of the susceptibility loss at ωτ ) 1.)

Analysis of the results (Table 1) shows that the
relaxation time of the microscopic process is in the range
characteristic for the fast process. The segmental re-
laxation time shows the usual increase with increasing
molecular weight (in PDMS for M < 104 Da21). The
characteristic τR of the segmental relaxation agrees well
with earlier data, τ ≈ 3.2 ps (νR ≈ 50 GHz at 400 K),
obtained by quasi-elastic neutron scattering measure-
ments on PDMS with M ) 6462 Da.9,20

The most interesting quantitative test of the model
is analysis of the Rouse relaxation time extracted from
the fit of the DLS spectra. Specifically, the relaxation
time of the Rouse mode, associated with molecular
weight ) 550 Da, is estimated as τ′1 ∼27 ( 3 ps, while
for the chain with M ) 1250 Da τ′1 ∼ 168 ( 13 ps.
Taking into account the fact that the relaxation time
estimated from DLS is half that of the corresponding
mechanical measurements, we predict that the mechan-
ical Rouse time is τ1 ∼ 54 ( 6 ps for PDMS chain with
M ) 550 and τ1 ∼ 336 ( 26 ps for PDMS chain with M
) 1250. We note that, although the spectral dependence
of the DLS estimated in ref 10 is basically in agreement
with our model, the relation of the relaxation time in
ref 10 to that of the Rouse model is not given clearly.
Moreover, molecular weight scaling of the Rouse time
with that from DLS gives τ1(1250)/τ1(550) ) 6.2. How-
ever, according to the Rouse model, τ1 ∼ M2, the ratio
of τ1 between these two molecular weight should be

(1250/550)2 ∼ 5.2. This difference is discussed in the
following section.

IV.3. Comparison with Viscoelastic Measure-
ments. To verify the Rouse relaxation time extracted
from DLS spectra, viscosity measurements were carried
out on the same PDMS samples from which relaxation
times are deduced. At high temperature, the zero-shear-
rate viscosity exhibits an Arrhenius temperature de-
pendence. For PDMS with M ) 550 Da

which gives log η0(Pa s) ) -3.09 ( 0.04 at 400 K. For
M ) 1250 Da

yielding for 400 K log η0 (Pa s) ) -2.66 ( 0.01.
The zero-shear viscosity is related to the longest

Rouse relaxation time as1,22

in which F is the mass density. For M ) 550 Da, F(400
K) ) 0.794 g/mL,23 and eq 19 gives τ1 ) 103 ( 9 ps. For
M ) 1250 Da, F(400 K) ) 0.832 g/mL,23 and we obtain
τ1 ) 604 ( 11 ps.

For unentangled polymers, the Rouse model predicts
the relaxation time to vary as M2. Thus, the ratio of
relaxation times for chains with M ) 1250 and M ) 550
is expected to be ∼5.2. The viscoelastic measurements
reveal stronger variation: τ1(1250)/τ1(550) ∼ 5.9, con-
sistent with estimates from DLS. This stronger varia-
tion may be ascribed to the change of the segmental
relaxation time (i.e., Tg) with molecular weight (Table
1), which in turn changes the effective friction coefficient
of the melt.

Analysis of the DLS spectra in the framework of the
proposed model provides an estimate of the relaxation
time for the longest Rouse modes in the two PDMS
samples. These are compared in Table 1 to the τ1
determined from the viscosities. We note that the two
methods give results that differ by a factor of 2. The
most obvious source of error is polydispersity in the
samples. According to the manufacturer, Mw/Mn ) 1.5-
2. The viscosity is governed primarily by the weight-
average, Mw, so that the differences in Table 1 are well
within the uncertainty arising from the molecular
weight distributions. The other source of error is the
ambiguity in fitting eqs 15 and 16 to the DLS spectra
in Figure 2 (which extends just over 2 decades). More-
over, the experimental limitation of the light scattering
(reliable data have been obtained only at ω/2π > 0.8-1
GHz) does not allow estimation of the longest chain
modes. We can conclude that the disagreement between
τΙ estimated from DLS and that from the viscosity is
well within the accuracy of the experiments.

V. Conclusion
In this paper, a theoretical model for the contribution

of chain relaxation modes to the DLS spectrum is
developed. We apply it to the determination of the
frequency dependence of the light scattering susceptibil-
ity spectrum and predict a close similarity to that of the
shear loss modulus, i.e., ø′′(ω) ∼ ω0.5. However, the chain
relaxation times from light scattering are predicted to
be a one-half the magnitude of the mechanical Rouse

log η0 (Pa s) ) -4.85((0.06) + 706((16)/T (17)

log η0 (Pa s) ) -4.59((0.01) + 773((4)/T (18)

τ1 ) 6
π2

M
FRT

η0 (19)

ø′′(ω) ) ø′′micro(ω) + ø′′seg(ω) + ø′′chain(ω) )
A1ωτm

1 + (ωτm)2
+

A2ωτseg

1 + (ωτseg)
2

+
A3ωτ′1

1 + (ωτ′1)
2

(15)

ø′′(ω) ) ø′′micro(ω) + ø′′seg(ω) + ø′′chain(ω)

)
A1ωτm

1 + (ωτm)2
+

A2ωτseg

1 + (ωτseg)
2

+

A3[ ωτ′1
1 + (ωτ′1)

2
+

ω(τ′1/4)

1 + {ω(τ′1/4)}2] (16)
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relaxation times. Using our model, we are able to
describe the experimental DLS spectra of unentangled
PDMS melts. Relaxation times extracted from the fit
of the DLS spectra were compared to Rouse relaxation
times obtained from the viscosity of the same samples.
The agreement was satisfactory, given the experimental
uncertainties.
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