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ABSTRACT: Stress, strain, and optical birefringence were measured for a series of peroxide-cured natural
rubbers, having both isotropic and double network structures. The residual stretch (permanent set) for
the latter ranged from 2.0 to 4.5, with elastic moduli that were an increasing function of this residual
strain, as found in previous works. A small birefringence, ca. 10-5, was observed for the unstressed double
networks, and its magnitude increased with increasing residual strain. The sign of this birefringence
corresponded to extension of the (undeformed) double networks. Under stress, the birefringence followed
the stress optical law. The double network properties were interpreted using the constrained-chain model
of rubber elasticity, with the assumption of independent, additive contributions from the two component
networks. The calculated results differed from the experimental findings, in particular underestimating
the residual strain. This failure is a consequence of the overprediction of the stresses during compression,
a limitation common to molecular theories of rubber elasticity. The modeling of the double networks
does account qualitatively for the sign of their unstressed birefringence, which is due to the stress-
optical coefficient being larger in tension than in compression. This particular deviation from the stress-
optical law is known from both theory and experiment.

Introduction
The properties of an elastomeric network depend not

only on the density of junctions (cross-links) but also
on the distribution and orientation of the chains when
the junctions are formed. The importance of chain
orientation is emphasized in double network rubbers,
which are elastomers cross-linked twice, the second time
while the material is deformed. Many studies have been
carried out on double networks,1-8 including their use
to evaluate the contribution of trapped entanglements
to rubber elasticity.9-14 Double networks can also arise
spontaneously via chain scission,15,16 via strain-induced
crystallization,17-19 or in the presence of reinforcing
fillers.20,21

Theoretical interpretations of these rubbers are based
on the idea that the component networks behave
independently, so that the mechanical response is the
sum of the individual contributions.3,22-24 The strain
energy for uniaxial deformation of a double network is
thus given by

where the subscripts 1 and 2 refer to the first and second
networks, respectively. The stretch ratio of the compos-
ite network, λ, is referenced to the original, undeformed
first network, and λX is the stretch during the second
cross-linking; hence, λ ) λ1 and λ2 ) λ/λX. The perma-
nent set of the final material, defined as the unstressed
stretch ratio λR, reflects the balance of forces between
the two networks. Expressed in terms of the engineering
stresses σ of the component networks,

For the usual circumstance in which the first network
is in tension during the second cure, λR < λX.

Double networks can be viewed as interpenetrating
polymer networks in which the same chain segments
belong to both networks and, more importantly, the
component networks are oriented. It is this orientation

that gives rise to enhancement5,7,8 and anisotropy25 of
the mechanical properties. The expectation, borne out
by experiment,5,25-28 is that the modulus of a double
network rubber will differ from the modulus of the
corresponding isotropic elastomer; at higher residual
strains, the equilibrium modulus is higher.

Unstressed double networks have been shown to be
birefringent.28 This is at odds with the stress optical
law,29 which for uniaxial deformation is

where ∆n is the birefringence, C the stress-optical
coefficient, and λσ the true stress. Although this un-
stressed birefringence has been observed,28 it was not
systematically explored, and no analysis was attempted.

The purpose of the present work was to examine the
behavior of double networks using molecular theories
of rubber elasticity, including quantifying their aniso-
tropy using optical birefringence. As has been shown,30-32

molecular elasticity models cannot describe the full
range of deformation behavior of rubbery networks, as
made apparent when tension and compression data are
considered simultaneously. This is the situation prevail-
ing with double networks; therefore, their study can
provide insight into the general problem of the elasticity
of high polymers.

Experimental Section
The polymer was cis-1,4-polyisoprene, in the form of depro-

teinized natural rubber (H. A. Astlett Co.), with 2.0 phr
dicumyl peroxide (Varox DCP-R, from R.T. Vanderbilt Co.)
added using a two-roll mill. The first networks, designated SA,
SB, or SC, were cured in a compression mold at 125 C, for
40-140 min, reacting from 15% to 39% of the peroxide (see
Table 1). To produce the double networks listed in Table 2,
the rubber was then stretched using a frame, with the
extension ratio measured by fiducial marks. The second cure
was carried out in a vacuum chamber, while the stretched
samples were contained between two aluminum plates, with
heat applied from both sides, using independently controlled
heaters. The assembly reached temperature (160 °C) in about

W1-2(λ) ) W1(λ) + W2(λ/λX) (1)

σ1(λR) ) -σ2(λR/λX) (2)

∆n ) Cλσ (3)
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20 min and was maintained there for 10 min, followed by
quenching. This consumed the remaining peroxide, with
negligible degradation of the first network. The isotropic, twice-
cured networks (i.e., DA0, DB0, and DC0, for which λX ) 1)
were verified to have equal moduli. Any nonuniform heating
or oxidative degradation gave rise to stresses near the edges.
Although the procedure minimized these problems, 15 mm was
trimmed from the edge of each specimen. The resulting 12.5
mm wide strips had uniform birefringence and remained flat
(no curling) when removed from the frame.

All measurements were done at room temperature. Uniaxial
extension measurements used an Instron 4206 with a Wallace
optical extensometer (elongation rate of 3.33 × 10-4 s-1, which
is 2%/min). Mechanical equilibrium data were obtained by
dead-weighting and measuring the displacement with a cathe-
tometer.

For the birefringence data, the light retardation was mea-
sured with a Sénarmont compensator,33 which involves a pair
of polarizing filters and a quarter-wave plate. The birefrin-
gence is determined by

where θ is the rotation angle of the polarizing filter necessary
to extinguish the transmitted intensity, Λ is the wavelength
of the light () 632.8 nm for HeNe laser), and l, the optical
path length, is the sample thickness. This method provides
the sign of the birefringence, which reveals whether the
apparent orientation corresponds to tension or compression.

Results
Uniaxial extension data were obtained on all net-

works, with the effect of relaxation corrected using the
factorable Kaye-BKZ equation.34,35 The engineering
stress is thus

where E(t) is the stress relaxation modulus, and the
damping function, g(λ), describes the strain dependence
of the equilibrium modulus. By assuming the effects of
time and strain to be separable, departures from strict
linear viscoelasticity are circumvented. The validity of
eq 5 has been demonstrated for cross-linked rubber
under large deformation, provided no strain reversal
occurs.36,37 For the twice-cured networks, stress relax-

ation was minimal; thus, the correction from eq 5 was
important only for the (partially cured) single networks.

Shown in Figure 1 are equilibrium stress-strain
curves for the double networks referred to as DA, formed
from the SA precursor network. The mechanical behav-
ior varies systematically with residual strain, as shown
previously.5,25-28 The stresses of the double network
rubbers exceed that of the corresponding isotropic
network (i.e., a network having equal cross-link density
with λX ) 1). This is further illustrated in the inset to
Figure 1, in which the secant modulus (stress at 100%
strain) is shown to increase with increasing residual
strain.

In Figure 2 we display the birefringence measured
for all the double networks at zero stress. For a given

Table 1. First (Precursor) Networks

first network cure time (min at 125 °C) µ1 (mol/m3)

SA 40 14.9
SB 105 32.0
SC 140 39.3

Table 2. Experimental Results for Double Networks

precursor
network

double
networka λX λR

modulus
(kPa)b ∆n (×106)

SA DA0 1 1 687 0
SA DA1 2.86 2.52 715 5.4
SA DA2 3.95 3.30 757 7.4
SA DA3 4.93 4.13 860 9.1
SA DA4 5.76 4.50 1040 11.8
SB DB0 1 1 687 0
SB DB1 2.84 2.26 c 9.3
SB DB2 3.88 2.72 c 16.8
SC DC0 1 1 687 0
SC DC1 2.75 2.03 c 16.0

a µ1-2 ) µ1 + µ2 ) 102 mol/m3 for all double networks. b Stress
at 100% strain. c Not measured.

∆n ) θΛ
πl

(4)

σ(t) ) ∫0

t
E(t-u) g(λ)

∂λ(u)
∂u

du (5)

Figure 1. Engineering stress as a function of stretch ratio
for the DA double networks, prepared from the single network
precursor SA (Table 1). The inset shows the stress at 100%
strain for each of these double networks, as identified by their
residual strain (see Table 2).

Figure 2. Birefringence measured at zero stress for the
double networks, as a function of their residual stretch.

Macromolecules, Vol. 33, No. 11, 2000 Double Network Rubbers 4133



precursor single network, there is an increase in ∆n
with increasing residual strain. On the other hand,
increasing the proportion of cross-links in the first
network (e.g., DA1 to DB1 to DC1, prepared at the same
λX) increases the birefringence, even though the residual
stretch λR decreases. We also note that the sign of the
birefringence, which has not previously been determined
for double networks, corresponds to tension. This may
seem obvious, since the residual strains are all elonga-
tion; however, as discussed below, the sign of ∆n at zero
stress is intimately related to the strain dependence of
the stress-optical coefficient.

The birefringence was also measured for the networks
under tension. As seen in Figure 3, this stress birefrin-
gence is proportional to the true stress, consistent with
eq 3. The slope of the line yields the stress optical
coefficient, C ) 1.8 GPa-1, a value in accord with
previous determinations on natural rubber.32,38,39 The
small intercept in Figure 3 represents the birefringence
shown in Figure 2.

Discussion
Mechanical Response. Modeling the mechanical

response of the double networks via eqs 1 and 2 requires
accounting for the elastic behavior of each component
network. Although we can measure the stress-strain
curves of the first network, this cannot be done directly
for the second network. Instead, the results for the
unoriented (λX ) 1) double network must be used to
deduce this information.

To carry out this analysis, we employ the diffused
contraint (DC) model of rubber elasticity.40 The advan-
tage of this approach is that the fitting parameters have
molecular significance. There are other constitutive
equations for rubber elasticity,41-44 including the phe-
nomenological chain models,45-49 but these lack the
physical insight provided by the constraint models.

In the spirit of the work of Flory et al.,50-52 who
pioneered this approach to describing rubber elasticity,
the DC model posits two contributions to the stress,
arising from cross-link junctions and from topological
constraints. The latter comprise entanglements and

excluded-volume interactions, which are assumed to act
continuously along the chain. In the absence of diluent,
the engineering stress σDC for the diffused constraint
model is given by the sum of the stress for a phantom
network, σph, which depends only on the cross-link
density, and the stress due to the constraints40

where λ⊥ is the stretch ratio perpendicular to the applied
load () λ-1/2 for uniaxial extension of an incompressible
rubber), and Θ signifies the relative position along the
network chain (Θ ) 0 and 1 at the network junctions).
A phantom network, which experiences no topological
interactions, has an engineering stress given by

in which µ is the cross-link density and RT has its usual
significance. Both eqs 6 and 7 ignore chain ends, which
are negligible for the high molecular weight natural
rubber used herein. (More generally, the cross-link
density is replaced by the cycle rank per unit volume.50)
We also assume tetrafunctional junctions, as expected
for peroxide cross-linked 1,4-polyisoprene.53

The function K(λ2) in eq 6 is defined by

where

and

Entanglements suppress fluctuations (Brownian mo-
tion) of the network segments. The degree of this
suppression varies along the chain as

where κj is a constant, equal to 0 and ∞ for the limiting
cases of phantom and affine behavior, respectively.50

Equation 6 assumes the constraint effect is distributed
uniformly along the chain, although more complicated
situations are possible.40

Representative equilibrium stress-strain measure-
ments are shown in Figure 4, for the single network SA
and the isotropic double network DA0, plotted in the
Mooney form of reduced stress, σ/(λ - λ-2), versus λ-1.
We have included previously obtained tension and
compression results on a rubber identical to DA0,
referred to in the prior publication as NR2.32 There is

Figure 3. Birefringence as a function of true stress for various
networks. The slope yields the stress optical coefficient, C )
1.8 GPa-1, which is independent of network structure.

σDC ) σph[1 + 2 ∫0

1λK(λ2) - λ-2K(λ⊥
2)

λ - λ-2
dΘ] (6)

σph ) µRT(λ - λ-2) (7)

K(λ2) )
B(λ2) Ḃ(λ2)

B(λ2) + 1
+

D(λ2) Ḋ(λ2)

D(λ2) + 1
(8)

B(λ2) )
κ

2(Θ)(λ2 - 1)

(λ2 + κ(Θ))2
(9)

Ḃ(λ2) ≡ ∂B(λ2)

∂λ2
) B(λ2)[ 1

λ2 - 1
- 2

λ2 + κ(Θ)] (10)

D(λ2) )
λ2B(λ2)
κ(Θ)

(11)

Ḋ(λ2) ≡ ∂D(λ2)

∂λ2
)

λ2Ḃ(λ2) + B(λ2)
κ(Θ)

(12)

κ(Θ) ) κj[1 + 4/3Θ(1 - Θ)] (13)
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excellent agreement between DA0 and NR2, except for
λ near unity, where the experimental uncertainty ap-
proaches infinity.32,54

The solid curves in Figure 4 represent the best fits to
eq 6. It is known that the constraint theories of rubber
elasticity cannot accurately describe experimental re-
sults involving more than one mode of deformation.30-32

Rather than poorly fit both the compression and tension
data for DA0, we restrict the fit of the DC model to λ-1

< 1 (tension). This results in an overestimation of the
stresses during compression. From these fits, we obtain
µ1-2 ) 102 mol/m3 and κj1-2 ) 3.0 for DA0 and µ1 ) 14.9
mol/m3 and κj1 ) 3.7 for the precursor network SA. An
inverse relationship between cross-link density and κj
is in accord with theory55 and with previous results,56,57

including specifically peroxide-cured natural rubber
networks.58

On the basis of the stability of the carbon-carbon
covalent cross-links obtained by peroxide curing,59 we
expect the first network to remain intact during the
second cure; that is, µ1 retains the value of 14.9 mol/
m3, and thus µ2 ) µ1-2 - µ1. The effect of constraints
on the first network, however, is not as obvious. If these
constraints depend only on the cross-link density, the
constraint parameter determined for the twice-cured
network would characterize both components of the
double networks, κj1-2 ) κj1 ) κj2 ) 3. On the other hand,
if the constraint for a given network is unchanged by
the second curing, then κj1 ) 3.7 and the value of κj2 is
unknown. Fortunately, the results calculated for the
double networks are relatively insensitive to the values
of the two constraint parameters; herein we assume κj1
) κj2 ) 3.

The analysis is based on the assumption that, for
double networks at mechanical equilibrium and zero
traction, the respective stresses from the component
networks balance, i.e., σ1 ) -σ2 (eq 2). We can use eq 6
to predict the residual stretch λR at which this occurs,
as governed by the cross-linking stretch λX. These

calculated λR are shown in Figure 5a for the DA series
double networks. In agreement with the experimental
results, the calculated residual strain increases with
increasing λX; however, as seen in Figure 5a, these
calculated λR are less than the experimental values.

The possibility exists that degradation of the first
network may reduce the retraction of the rubber fol-
lowing the second cure, thus contributing to a higher
observed residual stretch. Indeed, as described above,
oxidative degradation is sometimes observed at the
sample edges. These were removed by trimming to
produce uniform samples. We believe degradation plays
a negligible role in the mechanical response of the
double networks reported herein.

It is noteworthy that the residual strains are under-
predicted, since this is consistent with the error in the
rubber elasticity model. The calculated compressive
stresses are too high (Figure 4), whereby it follows that
the DC model will predict a higher retraction after the
second cure, to balance the respective stresses of the
component networks. The result that λR(calc) < λR(exp)
can be taken as a confirmation of the finding of earlier
work31,32 on natural rubber networks, that the con-
straint models overestimate the stress in compression.

This limitation of the elasticity model means that we
cannot expect more than qualitative predictions for
double networks. Nevertheless, using eqs 1 and 6, we
calculate the stress of the double networks under
deformation. These results are displayed in Figure 5b,
which shows the 100% secant modulus, normalized by
the modulus of the isotropic network having the same
cross-link density, for various λR. With increasing
residual strain, the predicted modulus increases, in the
manner of the experimental results, although the agree-
ment is not quantitative. For all experimental values
of λR herein, the modulus measured for the double
network exceeds that of the corresponding isotropic
network, although previous work found that this modu-

Figure 4. Reduced force versus inverse stretch ratio for two
isotropic networks: cured once (O) and twice (4). Also included
are data (0) obtained earlier,32 on a network having the same
composition as DA0. The solid line is a best fit of the DC
theory, using only tension (λ-1 < 1) data. Note the break in
the ordinate scale.

Figure 5. (a) Comparison of the residual stretch calculated
using eqs 2 and 6 (2) to the experimental results (45° dashed
line), for networks of varying λX. (b) Comparison of the
calculated modulus (dashed line) to the experimental results
(9) expressed as 100% secant modulus, normalized by the
value for the isotropic network having the same cross-link
density.
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lus enhancement is not observed at lower residual
strains (λR < 2).5

Optical Birefringence. The birefringence of a single
chain depends on the difference between its polarizabil-
ity parallel and perpendicular to the deformation,60

where Γ represents the difference in bond polarizabili-
ties along and transverse to the chain, x and y are the
respective projections of the chain end-to-end vector
along the two orthogonal directions, and 〈r2〉 is the mean
square average end-to-end vector. To obtain the mac-
roscopic birefringence, ∆n, eq 14 is averaged over all
chains. This gives60

where λx and λy are the molecular extension ratios. For
uniaxial extension of an incompressible material, λ )
λx ) λy

-2, and the polarizability difference averaged over
all chains is60

Obtaining an expression for the observed birefrin-
gence requires an elasticity model, to convert the
molecular deformation into a macroscopic strain. In the
classical rubber elasticity models, the difference between
the two principal stresses is proportional to the right-
hand side of eq 16, yielding the stress optical law (eq
3). For real networks, the connection between the
molecular extension and the macroscopic stress is more
complicated. According to the DC model,61

where ∆nph, the birefringence of a phantom network,
conforms to eq 3. The parameter b, which lies between
zero and unity, represents the direct contribution of the
constraints to the birefringence.62 Equation 17 predicts
deviation from a simple proportionality between optical
birefringence and the true stress, as do the other
constraint models. Such a breakdown of the stress
optical law has been observed experimentally in me-
chanical equilibrium measurements on silicone63 and
polybutadiene networks.64 It is also common during
viscoelastic experiments on polymers.65-68

The strain dependence of the stress optical coefficient
implicit in eq 17 can give rise to the zero-stress bire-
fringence observed for the double networks. The basic
hypothesis of double networks is that the stresses are
additive. By analogy with eq 1, we express the measured
birefringence as the sum of the contribution from the
component networks

In Figure 6 we plot the birefringence calculated from
eq 17, for two values of the constraint parameter, κj, with
b ) 1/2. The data have been normalized by the true

stress, to indicate the deviation from the stress-optical
law. There is an appreciable asymmetry, with the
network constraints producing a larger birefringence for
extension than in compression. To the extent eq 18 is
valid, this provides a qualitative explanation for the
data in Figure 2. The sign of ∆n for the double networks,
which corresponds to extension, is a consequence of the
larger birefringence of the first network, relative to that
of the second, at equal (absolute value of) true stress.

As described above, however, the DC model yields
overly large compressive stresses. This makes any
analysis of the birefringence data suspect, since a
prediction of the zero-stress birefringence relies on the
stress calculated for each component network. Addition-
ally, while the assumption of independent network
mechanical behavior is generally accepted,3,22-24 the
further assumption of additivity of the respective bire-
fringence from the two components (eq 18) may not be
correct.

Summary

Stress, strain, and optical birefringence measure-
ments on double networks provide a severe test of
rubber elasticity models. The deficiency of the con-
strained chain model in fully describing the data herein
is due at least in part to the fact that double network
rubbers encompass both compression and tension. Nev-
ertheless, while the theoretical treatment is not entirely
satisfactory, the model does provide useful insight into
the mechanical and optical behavior of double networks.

An obvious uncertainty in our analysis concerns the
value of the constraint parameter for the component
networks. In principle, one could fit stress-strain data
for the double networks in order to deduce κj1 and κj2.
This would reveal the effect of additional cross-linking
and orientation on the constraints on the first network.
Unfortunately, presently available elasticity models are
inadequate to this task.

Rxx - Ryy ) Γ x2 - y2

〈r2〉
(14)

x2 ) 1
3

λx
2〈r2〉, y2 ) 1

3
λy

2〈r2〉 (15)

Rxx - Ryy ) Γ
3

(λ - λ-2) (16)

∆nDC )

∆nph[1 + 2∫0

1B(λ) - B(λ⊥) + b[D(λ) - D(λ⊥)]

λ2 - λ-1
dΘ]
(17)

∆n1-2 ) ∆n1(λ) + ∆n2(λ/λX) (18)

Figure 6. Normalized birefringence as a function of the
inverse stretch ratio, as predicted by the constrained chain
theory for the indicated values of κj. Increasing κj from 3 to 3.7
displaces the peak toward larger extension, which can influ-
ence the birefringence of a double network rubber containing
this component network.
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The sign of ∆n1-2 measured herein corresponds to
tension and in this regard is consistent with the
birefringence calculated for the double networks. As
seen from Figure 6 and eq 18, however, this sign is
expected to be sensitive to the magnitude of κj. It would
be interesting to characterize the birefringence of other
double network rubbers, such as polybutadiene, having
a smaller entanglement molecular weight and higher
junction functionality than peroxide-cured natural rub-
ber. Calculations suggest this could occasion a change
in the sign of the birefringence for unstressed double
networks with λR > 1.
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