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ABSTRACT: Dielectric spectroscopy was carried out on linear and three-arm star polyisoprenes (PI).
The shape of the normal mode peak differed significantly from the corresponding mechanical terminal
relaxation function, although the temperature dependencies measured for the two spectroscopies were
similar. This represents a departure from the usual correlation between time and temperature
dependencies. In accord with mechanical relaxation data on these same polymers, the normal mode
peak is found to be broader and more sensitive to temperature for star-branched PI than for the linear
polymer.

I. Introduction

Dielectric spectroscopy is a useful compliment to the
more customary mechanical methods of probing the
viscoelastic properties of polymers. While many dielec-
tric studies have been carried out on local segmental
motion and secondary relaxations in polymers,1,2 inves-
tigation of the terminal, or “normal mode”, relaxation
is less common. The main reason for this is that
motions associated with the “chain modes” only affect
the dielectric response for polymers with a dipole
moment parallel to the chain contour (“type-A” poly-
mers). In the usual case, wherein the dipole moment
of a type-A polymer is sufficiently weak such that
dipole-dipole correlations are negligible, the normal
mode directly reflects the motion of the end-to-end chain
vector.3

The dielectric behavior of the type-A polymer 1,4-
polyisoprene (PI) has been extensively studied. Early
work employed natural rubber4,5 and was thus limited
to investigations of segmental relaxation, since the
normal mode for material of such high molecular weight
is obscured by conductivity. More recently, Adachi and
coworkers published a series of papers describing di-
electric measurements on both the segmental and
terminal modes of PI.6,7 They established that the
molecular weight dependence of the dielectric relaxation
times was essentially the same as that of the corre-
sponding mechanical relaxation times. They also ob-
served some increase in the breadth of the normal mode
peak with increasing molecular weight.
A number of investigations have been carried out on

the dielectric response of PI dispersed in polybutadiene
matrices.8-12 Such studies can provide unique informa-
tion, because the polybutadiene, lacking any dipole
moment parallel to the chain direction, does not inter-
fere with the PI normal mode. When the matrix
molecular weight is very high, the probe PI chains relax
much faster than the surrounding medium; that is,
constraint release and tube renewal mechanisms are
suppressed. This allows for stringent tests of theoretical
models for the low frequency dynamics of polymers.9,10

Boese and Kremer13,14 carried out dielectric measure-
ments on linear and branched polyisoprenes, quantify-
ing the dependence of the breadth of the normal mode
peak on molecular weight. They also reported that,
while the normal mode for star-branched polyisoprene
is shifted to lower frequencies relative to the linear

polymer, the respective temperature dependencies were
similar.14
Although reorientation of the end-to-end vector of a

type-A polymers results in a normal mode relaxation
corresponding to the terminal relaxation observed me-
chanically, the dielectric technique is not as generally
useful. In the frequency regime of most dielectric
spectrometers (>10 Hz), the normal mode response is
often masked to some degree by sample conductivity.
Interference from the latter is worse for higher molec-
ular weight polymers, since their spectra must be
obtained at higher temperatures in order to bring the
normal mode into the experimentally accessible range
of frequencies. It is for this reason that most of the
published dielectric data for the normal mode is limited
to low molecular weight polymers.6-14

This problem can be avoided by obtaining dielectric
measurements at lower frequencies, using a time do-
main instrument. This has the additional benefit of
providing data at the same frequencies and tempera-
tures as mechanical spectrometers. In the present
study, the normal mode relaxation of linear and star-
branched polyisoprene was characterized and contrasted
with previously reported mechanical spectroscopy re-
sults on the same polymers. The low-frequency range
of the dielectric measurements enabled the use of
samples higher in molecular weight than previous
work.6-14 This is helpful in isolating the terminal
response from the shorter time dynamics; moreover, for
our purposes, it is necessary to use star PI for which
the branches are highly entangled. When this is the
case, the terminal viscosity, which for branched poly-
mers depends primarily on the molecular weight of the
arms rather than the total molecular weight, will exceed
that of the corresponding linear polymer. In this
entangled regime, the specific consequences of branch-
ing on the rheology become prominent.

II. Experimental Section
The polyisoprenes were 93% 1,4-microstructure (Polymer

Source, Inc., Quebec, Canada), prepared by anionic polymer-
ization using sec-butyllithium as the initiator. The three-arm
star, formed by coupling the linear polymer using 2,4,6-tris-
(allyloxy)-1,3,5-triazine, was repeatedly fractionated in a
benzene/methanol solution prior to use. These polymers are
identical to those used in earlier dynamic mechanical testing.15
Their molecular weights and the distributions are listed in
Table 1.
Dielectric experiments employed a time domain spectrom-

eter (IMASS Inc.), having a nominal frequency range from 10-4

Hz to 10 4 Hz.16 The sample was contained between a pair of
25 mm aluminum plates with a guard ring on the detector
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side. The gap size was typically 0.25 mm. The temperature
stability and uniformity within the sample chamber (Delta
Design Model 9023) was better than (0.1 K. Typically
measurements were obtained at least twice at every temper-
ature.

III. Results
A. Relaxation Function of Linear PI. Displayed

in Figure 1 are representative normal mode dispersions
in the dielectric loss for the two linear polyisoprenes.
The relaxation contribution to the dielectric loss is given
by the Laplace transform of the derivative of the decay
function1,2

where ∆ε and ε∞ are respectively the dielectric strength
and limiting high frequency permittivity, ω is circular
frequency, and t is time. Toward low frequency, the
normal mode peak can be obscured by electrical con-
ductivity, the contribution of which must be subtracted
from the measured response. This conductivity can be
described by17

where the exponent would equal unity for direct current
conductivity. Empirically, it has been found that 0.5 e
s e 1 for polyisoprene.13
For the normal mode decay, we use the Kohlrausch-

William-Watts (KWW) stretched exponential equa-
tion18

in which τKWW is the relaxation time and 0 < â e 1.
This function, originally derived as an empirical fitting
function, is often used to analyze relaxation spectra.

Typical results of fitting eqs 1-3 to the linear PI data
are shown in Figure 1.
As is evident from Figure 1, the normal mode disper-

sion is quite narrow; the best-fit stretch exponent (â)
equals 0.87 ( 0.01. This is in accord with the limited
data of Imanishi et al.7 on high molecular weight,
monodisperse PI, for which they reported a breadth at
half-maximum (for the semilogarithmic plot) of slightly
less than 1.5 decades. The KWW function does not fully
describe the dielectric dispersions in Figure 1; in
particular, there is a noticeable deviation at high
frequencies. Before addressing the origin of this devia-
tion, it is useful to note one consequence of it.
Boese and Kremer13 obtained dielectric spectra on PI

over the frequency range from 10-1 to 10 9 Hz, which
were fitted to the empirical Havriliak-Negami (HN)
equation19

where

a and b are shape parameters, and the relaxation time
τHN > τKWW. Boese and Kremer then transformed this
analytical representation of the data to the time domain,
whereupon direct fitting to eq 3 could be carried out.
As has been shown previously,15,20 this method of
analysis weights the tail of the dispersion, whereas
fitting frequency domain data directly to eqs 1 and 3
emphasizes the peak. Hence, from the transform of the
Havriliak-Negami fit to the dielectric loss data for a
PI of Mw ) 17 000 (the experiments of Boese and
Kremer were limited to relatively low molecular weights
due to conductivity interferences at the high frequencies
used), a value of â ) 0.56 was obtained.13 As shown in
Figure 2, this is less than the stretch exponent one
would obtain by direct fitting of the Boese and Kremer
data in the frequency domain.
The point is that the KWW fitting procedure is

ambiguous when, as in the present situation, this

Table 1. Properties and Parameters (eq 12) of Linear and
Three-Arm Star Polyisoprenes

Mw Mw/Mn A (s) B T∞

L145 linear 145 000 1.06 2.80 × 10-5 1302 170.7
L357 linear 357 000 1.08 6.72 × 10-4 1302 170.7
S342 three-arm star 342 000a 1.10 5.58 × 10-8 3429 95.6

a Calculated from the molecular weight of the linear precursor,
with the polydispersity determined from size exclusion chroma-
tography.

Figure 1. Representative terminal dispersions in the dielec-
tric loss for the low (1) and high (2) molecular weight linear
PI, along with the best fit to eqs 1-3 (s). The dotted line
represents the conductivity contribution (eq 2) and the dashed
line the fitted KWW function (eq 3).

Figure 2. Normal mode data of Boese and Kremer13 for PI
(Mw ) 17 000), along with the KWW function (eq 3) having
the parameters obtained by fitting in the time domain the
transform of their best-fit of the Havriliak-Negami function
(eq 4) to the original dielectric loss data. Direct fitting of the
dielectric loss to eqs 1 and 3 in the frequency regime would
yield a larger â and more accurately represent the experimen-
tal points near the peak maximum.

ε(ω)′′ )
∆ε sin(bΨ)

[1 + 2(ωτHN)
a sin(1/2πa) + (ωτHN)

2a]b/2
(4)

tan Ψ )
(ωτHN)

a cos(1/2πa)

1 + (ωτHN)
a sin(1/2πa)

(5)

εrel(ω)′′ ) ε∞ + ∆ε∫0∞ -[dε(t)/dt] sin(ωt) dt (1)

εcond(ω) ∝ ω-s (2)

ε(t) ) exp -( t
τKWW

)â
(3)
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function does not completely describe the spectrum.
Since our main interest is assessing the temperature
dependence of the normal mode relaxation, the focus
herein is on the center of the dispersion. This part of
the terminal relaxation is less likely to be obscured by
other contributions (e.g., from Rouse modes) than the
higher frequency spectral wing.
Figures 3 and 4 depict the normal modes for the two

linear PI. Also shown in these figures are the terminal
dispersions in the mechanical loss modulus15 obtained
on the same samples used herein for the dielectric
measurements. Although the respective correlation
functions are not identical,10,11 mechanical and dielectric
terminal spectra involve the same low-frequency chain
motions. For both L145 and L357, the mechanical peak
is much broader, particularly toward higher frequency.
This agrees with the data of Adachi et al.21 for lower
molecular weight PI.
The Rouse model for chain dynamics provides an

inkling as to the origin of this difference. Valid for
polymers of molecular weight too low for entanglement
effects (i.e., lower than herein), the modulus of a Rouse
chain is22,23

where τ1 is the relaxation time for the p ) 1 (slowest)
mode. Note that all modes contribute equally to the
mechanical response, albeit at different frequencies. The
Rouse model yields for the dielectric normal mode
relaxation3,24

Due to the symmetry of type-A polymers, having an
unreversed sequence of dipoles along the chain, even
terms are absent from the series in eq 7. This, along
with the p-2 weighting of the odd terms, means that
the longest (p ) 1) mode dominates the dielectric
spectrum. Of course, neither eq 6 nor 7 are applicable
to the data in Figures 3 and 4, since the molecular
weights of these two polymers are much greater than
the entanglement molecular weight of PI (Me ) 640025,26).

Nevertheless, it is tempting to infer that the broader
mechanical dispersion reflects the higher (p > 1) modes,
the contribution of which is suppressed in the dielectric
spectrum.
A more exact analysis requires that the entanglement

effect be incorporated into the Rouse model. The best-
established approach is to adopt the tube model,22 based
on the idea of chain reptation through topological
constraints imposed by neighboring chains.27 The rep-
tation prediction for the modulus is22,23

where the tube disengagement time, τd, is much longer
than the longest Rouse time, τ1. In comparison to the
Rouse model (eq 6), reptation predicts a narrowed
distribution of relaxation times, a consequence of the
one-dimensional motion of chains confined to an en-
tanglement tube.22 It is well-known that experimentally
the relaxation modulus is much broader than the
reptation prediction.15,22
The loss of even modes and p-2 weighting, which in

the dielectric spectra are a consequence of the symmetry
of unreversed type-A dipoles, also is found in the tube
model’s expression for the modulus, leading to the
expectation of equivalence of the dielectric and mechan-
ical spectra for high molecular weight polymers.21 The
contrary results in Figures 3 and 4 reflect the fact that
strict confinement to a tube, whence the p-2 weighting
and absence of even terms in eq 8, is too restrictive an
assumption.
Refinements of reptation theory have been proposed

which include additional mechanisms, such as contour
length fluctuations and constraint release.28-32 These
modifications of the tube model serve to alleviate the
severity of the tube constraints, allowing some chain
diffusion transverse to the contour length. While the
refinements improve the agreement with experiment,
differences between the calculated and measured re-
laxation functions remain. Moreover, dielectric data on
PI dispersed in high molecular weight polybutadiene,
wherein constraint release should be less important, are
still at odds with the tube model.8,10,12,33,34
An alternative modification of the Rouse model ac-

counts for entanglements by multiplying the Rouse
relaxation rate by the quantity (t/tc)â-1, in which tc is

Figure 3. The terminal dispersion in the dielectric loss (1,
measured at 34 °C) and in the loss modulus (O, taken from
ref 15) for L145, along with the best fit of respectively the
KWW function (s) and the coupling model including higher p
modes (s - s) to ε(ω)′′. The mechanical data has been normal-
ized to give the same peak intensity as the dielectric disper-
sion.

GRouse(t) ∝ ∑
p ) 1

∞

exp(-
p2t

τ1 ) (6)

εRouse(t) ∝ ∑
p, odd

∞

p-2 exp(-
p2t

τ1 ) (7)

Figure 4. The terminal dispersion in the dielectric loss (1,
measured at 30 °C) and in the loss modulus (O, taken from
ref 15) for L357, along with the best fit of respectively the
KWW function (s) and the coupling model including higher p
modes (s - s) to the dielectric data. The mechanical data has
been normalized to give the same peak intensity as ε(ω)′′.

Greptation(t) ∝ ∑
p, odd

∞

p-2 exp(-
p2t

τd ) (8)
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the time scale over which the dynamics are unimpeded
by intermolecular constraints. This approach is known
as the coupling model (CM),35,36 since it emphasizes the
intermolecular cooperativity of the dynamics in densely
packed systems. Solving the rate equation for the
relaxation of stress for coupled Rouse chains leads to35,36

in which the coupled relaxation time of the pth mode is
related to that of the corresponding Rouse mode as

While various approaches yield the first term in eq 9
for the relaxation function,37-41 eq 10 is unique to, and
in fact the essence of, the coupling model. From eq 10,
important predictions arise concerning the molecular
weight and temperature dependence of the terminal
relaxation of polymers.35,36,42,43 Since the terminal
viscosity is determined primarily by the p ) 1 term,
application of the coupling model heretofore employed
the approximation of truncating the series in eq 9 to
the first mode. Eq 9 then has the form of eq 3, which
was used as an empirical fitting function by Tobolsky
and co-workers44 and more recently by Palade et al.45
These investigators reported that it gave a reasonably
good fit to the terminal relaxation modulus of entangled
polymers.
In applying the coupling model to our dielectric data,

we can retain the p > 1 terms to yield from eqs 7 and 9

This assumes that the stretch exponent is independent
of p, which should be okay for small p, representing
modes with length scales much greater than the mo-
lecular weight between entanglements. Contributions
beyond p ) 5, which may be associated with an
increasing â (reflecting weaker topological constraints36,43)
are negligible due to the p-2 weighting.
The fit of this expression to the measured dielectric

loss data is shown in Figures 3 and 4 for L-145 and
L357, respectively.
B. Temperature Dependence of Linear PI. Nor-

mal mode relaxation times were determined as the
inverse of the frequency of the peak in the dielectric loss
after subtraction of the conductivity. This yields values
somewhat longer than the τKWW in eq 3. The results
are shown in Figure 5, along with the corresponding
terminal relaxation times determined mechanically on
the same samples.15 All data conformed to the Vogel-
Fulcher equation23

The parameters, tabulated in Table 1, enabled fits to
the data over the limited temperature range of the
measurements; as such, they cannot be relied upon for
extrapolation. Additionally, given the phenomenological
origin of the Vogel equation,23 no significance should be
drawn from the respective values.
As shown in the figures, for both spectroscopies the

data for the lower molecular weight PI, L145, can be

superimposed on the results for L357 by multiplying the
τ by a factor of 24; that is, the molecular weight
dependence is the same for the two spectroscopies. This
factor of 24 corresponds to a power dependence on
molecular weight equal to 3.5 ( 0.1, which is consistent
with earlier dielectric results6,13 and the molecular
weight dependence of PI’s viscosity.49,50
The relaxation times determined dielectrically are 3.6

times longer than the mechanical values. This differ-
ence is consistent with the fact that the dielectric
relaxation time corresponds to a mechanical retardation
time.1 For a Maxwell model, the ratio of the retardation
and relaxation times would equal the ratio of the
unrelaxed and relaxed modulus (or dielectric constant);1
for polymers the relationship is more complicated.7,11
As an aside, we note that the dielectric and mechanical
segmental relaxation times were found to differ by a
factor of 20 for polyisoprene.51
It can also be seen in Figure 5 that the temperature

dependence of the dielectric and mechanical relaxations
are the same, notwithstanding that the latter has a
broader relaxation function (e.g., Figures 3 and 4).
There is a well-established empirical correlation be-
tween the shape of a relaxation function and the
temperature dependence of the relaxation time, with
broader dispersions exhibiting greater temperature
sensitivity.43,52-58 The absence of such a correlation in
the present situation is due to the fact that the same
relaxation is being measured by the two spectroscopies.
The additional breadth seen in the mechanical spectrum
reflects the contribution of additional modes (cf. eqs 6
and 7), rather than any inherently different relaxation
behavior.
C. Three-Arm Star PI. Previous mechanical

measurements15 on the three-arm star PI, S342,
revealed its terminal dispersion to be broader and, more
significantly, the temperature sensitivity of its terminal
relaxation time greater than for linear PI. Since the
normal mode relaxation for a polymer with unreversed
dipole moments parallel to the chain can be identified
with the end-to-end displacement, we anticipate at least
qualitatively the same behavior for the dielectric spec-
troscopy results.
Figure 6 shows the dielectric loss measured for the

S342. After subtraction of the conductivity (eq 2), the
normal mode peak is obtained. The range of tempera-

GCM(t) ∝ ∑
1

∞

exp -( tτ*p)
â

(9)

τ*p ) [τ1p
-2tc

â-1]
1/â (10)

εCM(t) ∝ ∑
p, odd

∞

p-2 exp -( tτ*p)
â

(11)

τ ) A exp B
T - T∞

(12)

Figure 5. The dielectric normal mode relaxation times for
the linear (1, L145; 2, L357) and three-arm star (() PI, along
with the corresponding mechanical relaxation times (hollow
symbols) obtained on the same polymers (data taken from ref
15). The values for L145 have been multiplied by a factor of
24, which brings them into coincidence with the data for the
higher molecular weight PI. The lines through the points
represent the best-fit to eq 12.
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tures over which acceptable measurements could be
obtained on the star PI was limited by interferences
from conductivity. Although the inherent conductivity
is not worse for the star in comparison to the linear PI,
the former’s broader dispersion makes it more difficult
to accurately extract the relaxation component from the
experimental measurements. Nevertheless, as seen in
Figure 6, the dielectric loss peak for S342 is >1 decade
broader than the normal mode peak measured for the
linear PI (Figures 3 and 4). Although conforming to eq
3 only toward the lower frequencies, we estimate for the
three-arm star PI that â ) 0.42 ( 0.04, compared to
the result for linear PI, â ) 0.87 ( 0.01.
The normal mode relaxation times for S342 are shown

in Figure 5, along with the data for the linear PI. Apart
from any contribution from other mechanisms, the
temperature dependencies of linear and branched poly-
mers are predicted by reptation theory to be equivalent,
because the model has only one friction factor.22,59 Since
the plots in Figure 5 are not linear, the respective
temperature sensitivities cannot be assessed directly
from the slopes of the Arrhenius curves.
A method to compare temperature dependencies of

linear and branched polymers has been suggested by
Graessley,60,61 based on the idea that a branched chain
requires retraction of its arm in order to proceed along
its “tube” of constraints.27,62 Such retraction produces
a more compact transient structure. This corresponds
to a higher concentration of gauche conformers, the
higher energy of which would produce a higher activa-
tion barrier for the terminal relaxation process. Poly-
isoprene is exceptional, however, in that its trans and
gauche conformers have the same energy.61 Accord-
ingly, PI is predicted to be unique, having the same
temperature dependence, independent of branch struc-
ture.50,60,61
To test this idea, in Figure 7 we display the normal

mode relaxation times for the stars normalized by the
relaxation times for the linear PI (using eq 12 for
interpolation). Although there is some scatter in the
results, reflecting uncertainty in the conductivity sub-
traction, it is clear that the three-arm star exhibits a
stronger temperature dependence than the linear PI.
From the slope in Figure 7, we estimate that the extra
temperature dependence of the star corresponds to an
activation energy of 1.3 (0.2 kcal/mol. Thus, the
experimental results are in qualitative disagreement
with the prediction of reptation theory for the relative
temperature dependencies of linear and star PI.60,61

These dielectric results corroborate previous mechan-
ical data showing that PI is quite similar to other
polymers with respect to the effect of branching on its
temperature dependence. Interestingly, the mechanical
result for S342 indicated an excess activation energy
equal to 2.3 kcal/mol,15 larger than the dielectric value.
However, branched PI exhibits thermorheological com-
plexity in the terminal region of its viscoelastic spec-
trum,15 which is the usual situation for branched
polymers.60,61 Since the terminal zone changes shape
with temperature, a different measure of temperature
dependence (rather than comparing peak frequencies)
would yield a different excess activation energy in
Figure 7. Finally, we point out that the stronger
temperature dependence of the branched PI is not
related to the magnitude of its local friction coefficient,
as evidenced by the equal glass transition temperatures
of the linear and star PI.15

IV. Summary
Dielectric spectroscopy offers advantages for the study

of the low-frequency dynamics of polymeric liquids.
Dielectric spectra reflect the same chain motions as the
mechanical modulus; however, the reduced interference,
due to symmetry, from shorter time processes (i.e., the
higher Rouse modes in eqs 6 and 7) serves to isolate
the normal mode. Better resolution of the terminal
dispersion facilitates assessment of rheological models.
This advantage of dielectric spectroscopy for analysis

of the terminal mode is shared by mechanical compli-
ance measurements.63 Unfortunately, theoretical mod-
els invariably provide expressions for the relaxation
modulus, which usually cannot be obtained analytically
from compliance data. For example, there is no analyti-
cal representation of the compliance function for the
Rouse model.64 This accounts for the preference for the
modulus rather than the compliance. However, the
dielectric permittivity provides a direct measure of the
decay function (eq 1), as well as emphasizing the
terminal mode.
Herein the dielectric normal mode of PI was seen to

be significantly narrower than the corresponding dis-
persion in the loss modulus. While this is expected for
unentangled polymers, it was found to be the case even
for PI having a molecular weight more than 50 times
greater than Me. Such an observation is at odds with
the tube model’s description of the long-range dynamics
in terms of reptation along a tube of fixed constraints.
The fact that the tube model is overly restrictive in this

Figure 6. Normal mode for three-arm star PI ((), along
with the best fit to eqs 1-3 (s). The dotted line represents
the conductivity contribution (eq 2) and the dashed line the
KWW function. Partly due to polydispersity, the fit to eq 3 is
mediocre.

Figure 7. Arrhenius plot of the ratio of the normal mode
relaxation times for the three-arm star S342 and the linear
PI (see Figure 5). The slope yields a value for the excess
activation energy, equal to 1.3 kcal/mol.
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regard has been established frommechanical relaxation
measurements.28-32

The present dielectric results confirm previous me-
chanical data showing the terminal relaxation times of
star-branched PI to be more sensitive to temperature
than linear PI. This is at odds with reptation theory,
in which the only temperature-dependent quantities
are the local friction factor and, when arm-retraction
mechanisms become important, a transition state
energy.22,59-61 Since for PI there is no energy difference
between gauche and trans rotamers, the reptation
prediction is that no difference in temperature depen-
dence between linear and star PI exists60,61
The coupling model of relaxation adopts a strategy

diametrically opposite to that of a single chain theory
like reptation, in that molecular considerations are
ignored, with the emphasis placed on the general
principles governing constraint dynamics in condensed
matter. The coupling model makes the opposite predic-
tion from reptation concerning the temperature depen-
dence of branched polymers. An explicit prediction of
the coupling model is that broader relaxations will
always be more sensitive to temperature. In this
respect, the coupling model correctly describes the
relative temperature dependencies of linear and star PI.
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