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ABSTRACT: Published dielectric relaxation measurements for poly(propylene glycol)
and 1,4-polyisoprene are analyzed to determine the relative effects that thermal energy
and volume have on the temperature dependence of the normal-mode relaxation times,
and these are compared with their effects on the temperature dependence of the local
segmental relaxation times. For both polymers at temperatures well above the glass-
transition temperature, both relaxation modes are governed more by the thermal
energy than by the volume, although the latter’s contribution is not negligible. Such a
result is consistent with an assumption underlying models for polymer viscoelasticity,
such as the Rouse and tube models, that the friction coefficient governing motions over
large length scales can be identified with the local segmental friction coefficient.
Moreover, the relaxation data for both the segmental and normal modes superimpose
when expressed as a function of the product of the temperature and volume, the latter
being raised to a power. This scaling form arises from an inverse power law for the
repulsive part of the intermolecular potential. The value of the exponent on the volume
is the same for the normal and segmental motions and for both polymers indicates a
relatively soft potential. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42:
4313–4319, 2004
Keywords: density; dielectric relaxation; normal mode; polyisoprene; poly(propylene
glycol); relaxation; segmental mode; rheology

INTRODUCTION

The rheology of polymeric materials has obvious
practical significance and has been the focus of
much research over the past half-century. The
slow dynamics of entangled molecules is usually

interpreted in terms of reptation,1 which empha-
sizes the disparity in the spatial constraints on
transverse motions, as opposed to motion along
the chain backbone. The Doi–Edwards tube
model2 provides a theoretical framework for the
reptation idea and, with various refinements over
the past 25 years, has become predominant in the
field.3,4 The tube model describes the entangled
dynamics as Rouse chains moving in a network of
topological constraints. There are two species-de-
pendent parameters, the local (Rouse) friction co-
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efficient (�) and a parameter characterizing the
entanglements. For both the tube and Rouse mod-
els, the temperature dependence of the chain dy-
namics is contained in �. Because this is the same
friction coefficient governing local segmental re-
laxation,5,6 ostensibly the implication is that the
local modes and the chain modes should have the
same temperature dependence. (This expectation
is implicit in master curves for the dynamic prop-
erties of polymers that extend from the rubbery
plateau into the glassy zone.) However, as shown
by the breakdown of time–temperature superpo-
sitioning in the softening zone of the mechanical
response,7–11 and by direct comparison of normal
and segmental modes in the dielectric spectra of
type-A polymers,12 the local dynamics and the
chain modes do not always have the same tem-
perature dependence. Within the scope of the
tube and Rouse models, the discrepancy lies in
the identification of � with the friction coefficient
for segmental relaxation.

Here we analyze published dielectric spectros-
copy data to investigate local segmental relax-
ation (dielectric � process) and chain dynamics
(dielectric normal-mode process) in poly(pro-
pylene glycol) (PPG) and polyisoprene (PI). Both
polymers are barely entangled. PPG has a molec-
ular weight of 4.0 kg/mol, and its entanglements
are reputed to be abetted by transient coupling
via hydrogen bonding of the chain ends.13 For PI,
the weight-average molecular weight is 11.1 kg/
mol, which is larger than the entanglement mo-
lecular weight by almost a factor of two.8 PPG and
PI are both type-A polymers, having a permanent
dipole moment parallel to the chain, which means
that global motions of the backbone are dielectri-
cally active.14,15 Many dielectric studies of
PPG16–21 and PI8,12,22–25 have been carried out at
ambient pressure, but only a few have been per-
formed at elevated pressures.26–29 Recently, di-
electric relaxation times for the normal mode (�N)
and for local segmental relaxation (��) were mea-
sured for PPG30 and PI31 as a function of temper-
ature and pressure. Although the focus of the
tube and Rouse models is the rheological re-
sponse, dielectric spectroscopy probes the chain
dynamics in an analogous fashion as mechanical
measurements.8,32 Thus, although the shape of
the respective relaxation spectra can differ4, the
temperature and pressure dependences of the re-
laxation times as measured by the two methods
are the same.8,10,31,33,34 By combining the dielec-
tric results for these two materials with equation-
of-state (pressure–volume–temperature) data, we

can obtain the volume dependence of the relax-
ation times. More specifically, we can assess the
effects of changes in thermal energy and volume
on the respective temperature dependences of ��

and �N.
Previously, this type of analysis has been car-

ried out only for the segmental relaxation pro-
cess.35–44 For small-molecule van der Waals liq-
uids, the contributions to ��(T) from temperature
and volume are comparable, as reflected in the
magnitudes of the isobaric and isochoric activa-
tion energies.43,44 On the other hand, for poly-
mers, temperature generally exerts a more dom-
inant influence on the segmental relaxation.
However, the effect of volume is not negligible
and becomes more important for more flexible
chain polymers, such as siloxanes.36 For strongly
hydrogen-bonded materials, temperature tends to
become overwhelmingly the dominant parameter
controlling the temperature dependence of the
relaxation times.

In this work, we extend the analysis of temper-
ature and volume effects to consider the normal
mode. We also employ a recently proposed scaling
of the relaxation times that is based on an inverse
power form for the intermolecular repulsive po-
tential.45 We find that for PPG and PI well above
the glass-transition temperature (Tg), �� and �N
are governed similarly by temperature and vol-
ume. Accordingly, master curves for each have
been obtained, with the same scaling exponent for
the two relaxation times. Our findings give strong
support to a basic tenet of the tube and Rouse
models, that is, the use of the local segmental
friction factor in the description of the global
(chain) dynamics.

RESULTS

PPG

We have previously reported the segmental-mode
and normal-mode relaxation times for PPG, mea-
sured from ambient pressure to pressures as high
as 1.2 GPa, at five temperatures (from 258 to 313
K).30 The relaxation times are defined as the in-
verse of the angular frequency associated with
the maximum in the dielectric loss and are close
to the average relaxation times, if the peaks are
not broad. For this molecular weight of PPG (4
kg/mol), there is a substantial difference between
�� and �N. However, because the segmental relax-
ation times are more sensitive to both tempera-
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ture19 and pressure29,30 than the normal-mode
relaxation times are, conditions can be found un-
der which the two relaxation processes can be
measured simultaneously. We convert the iso-
therms [isothermal dielectric relaxation times as
a function of pressure] from ref. 30 into a function
of volume by using the equation state for PPG:30

V�T,P� � �0.9852 � 7.2 � 10�4T � 4.710�7T2�

� �1 � 0.0894 ln�1 �
P

171 exp� � 0.0052T��� (1)

where V is the specific volume (mL/g), P is the
pressure (MPa), and T is the temperature (°C).
The results are plotted in Figure 1.46 It can be
seen that relaxation times for either process are
not uniquely defined by the volume; thermal en-
ergy obviously exerts an influence. However, ��

and �N are also changing with pressure for any

fixed temperature, and this means that volume
also plays a role.

We can quantify the relative effects of temper-
ature and volume from the ratio of the thermal
expansivity measured at a constant value of the

relaxation time, �� � V�1
�V
�T�

�

, to the isobaric

value of the thermal expansion coefficient, �p

� V�1
�V
�T�

p

.42 This ratio, ����/�P (because �� is less

than 0, the absolute value is the quantity of in-
terest), measures how much the volume has to
change (by a variation of pressure) for the relax-
ation time to remain constant when the temper-
ature is varied. Thus, ����/�P is 1 if temperature
(thermal energy) and volume exert equivalent ef-
fects on the temperature dependence of the relax-
ation times, whereas the ratio is much larger
than one if temperature is the more dominant
control variable.42 The expansivity ratio is related
to the apparent activation enthalpies (slopes of
the Arrhenius curves) at constant volume (HV)
and constant pressure (EP) as ����/�P � �HV/(EP

� HV).39 The quantity HV/EP is another measure
of the relative effect of temperature and volume
on �(T).41

For PPG at ambient pressure near Tg (�202
K), ����/�P is 2.0 � 0.4,30 and this means that for
low temperatures, thermal energy exerts roughly
twice the influence that the specific volume does
in determining the change in �� with tempera-
ture. This result is consistent with the early work
of Williams.47 Near Tg, the chain modes are too
slow to be measured dielectrically. To compare
the temperature and volume effects on both ��

and �N at the same temperature, we calculate the
expansivity ratios for the two processes at a
higher temperature (288 K) and an elevated pres-
sure (186 MPa). These particular conditions avoid
the need of extrapolating any of the data in Fig-
ure 1. From eq 1, �P � 4.72 � 10�4 K�1. The
isochronal thermal expansion coefficient is calcu-
lated at 288 K and pressures at which �N is fixed
at 0.01 s; this yields ��,N � �1.30 (� 0.1) � 10�3

K�1. At 288 K and 186 MPa, the segmental relax-
ation time is 2.0 � 10�5 s. The volume expansivity
at which �� is fixed at this value is calculated to be
��,� � �1.25 (� 0.2) �10�3 K�1. As summarized
in Table 1, the ratio of these quantities is then
obtained as ���,N�/�P � 2.8 � 0.2 for the normal
mode and as ���,��/�P � 2.6 � 0.3 for the segmen-
tal mode.

Figure 1. Segmental-mode relaxation times (hollow
symbols) and normal-mode relaxation times (half-filled
symbols) for PPG as a function of the specific volume
(V). The measurements were carried out at the indi-
cated temperatures at various pressures30,46 and at
ambient pressure as a function of temperature.25
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The expansivity ratio for the segmental mode,
���,��/�P � 2.6, is larger than the value at Tg,30

indicating that the relative contribution from
thermal energy increases at higher temperatures.
In fact, we find there is a consistent trend of
slightly increasing ���,��/�P with decreasing ��. Of
greater interest here is the finding that within the
experimental error, local segmental relaxation
and the normal mode are governed equivalently
by temperature and volume: ���,��/�P � ���,N�/�P

� 2.7. That is, roughly three-quarters of the in-
crease in either relaxation time with increasing
temperature is a direct result of greater thermal
energy, the remaining increase in � due to the
accompanying volume expansion. It is interest-
ing that even though both the temperature and
pressure dependences of the two relaxation
times differ, at least in the regime in which �N is
approximately 0.01 s and �� is about 3 decades
shorter, the relative effects of thermal energy
and volume are the same for the two processes.
The larger variation in �� with a change in
either temperature or volume is due to the
greater sensitivity of the local segmental dy-
namics to these variables, not to a difference in
their relative effect on ��. The relatively weak
effect of the volume on ��(T) and �N(T) is osten-
sibly at odds with free-volume interpretations
of polymer dynamics; however, the free volume
and the specific volume are not equivalent. In
fact, the former can even change at fixed vol-
ume.5

PI

Floudas and Reisinger31 reported isotherms for
both �� and �N of PI measured at a series of
temperatures at ambient pressure and at two
temperatures for pressures up to 350 MPa. The
reported Vogel–Fulcher fits to these data are plot-
ted in Figure 2 as a function of the specific vol-
ume, the latter determined from the equation of
state for PI:31

V�T,P� � �1.0943 � 6.293 � 10�4T � 6.231

� 10�7T2��1 � 0.0894 ln

� �1 �
P

202 exp� � 0.004653T��� (2)

Figure 2 shows that temperature and volume
both affect the temperature dependence of the
relaxation times. Just as for PPG, we calculate
the isobaric and isochronal thermal expansion co-
efficients. To avoid any extrapolation, we choose

Table 1. Results for PPG and PI

T P �N �� ���,N/�P ���,�/�P 	

PPG 258 K 186MPa 0.01 s 2.0 � 10�5 s 2.8 � 0.2 2.6 � 0.3 2.5 � 0.35
PI 283 K 200MPa 0.1 s 3.1 � 10�6 s 3.0 � 0.3 3.3 � 0.4 3.0 � 0.25

Figure 2. Segmental-mode relaxation times (hollow
symbols) and normal-mode relaxation times (filled
symbols) for PI as a function of the specific volume (V).
The measurements31 were carried out isobarically at
atmospheric pressure and isothermally at the two in-
dicated temperatures at pressures of 0.1–350 MPa for
�N and 150–350 MPa for ��.
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263 K and 200 MPa, for which �P is 3.589 � 10�4

K�1. The relaxation times at this temperature
and pressure are �N � 0.01 s and �� � 3.1 �10�6

s, for which the corresponding isochronal expan-
sivities are calculated to be ��,N � �1.08 (� 0.1)
�10�3 K�1 and ��,� � �1.18 (� 0.15) �10�3 K�1.
From these data, we calculate the expansivity
ratios listed in Table 1; within the experimental
error, we find ���,N�/�P � ���,��/�P � 3.2. Thus,
similar to the case of PPG, the effects of temper-
ature and volume are the same for the two relax-
ation processes. Also, at this relatively high tem-
perature, thermal energy has a stronger influence
on the relaxation times than the volume does.
Floudas and Reisinger31 reached a similar conclu-
sion specifically for the � relaxation at lower tem-
peratures, near Tg.

Scaling of the Relaxation Times

There is no accurate theoretical prediction for the
combined temperature and pressure dependences
of either the segmental-mode or normal-mode re-
laxation times. Although ��(T) data are known to
conform to the Vogel–Fulcher (or Williams–Lan-
del–Ferry) equation up to about 1.3 � Tg, the
origin of this behavior is uncertain, with different
models, based variously on free volume48–50 or
entropy,51–53 showing limited success. For the
pressure dependence of ��, the situation is worse,
with different models yielding disparate forms for
��(P). Concerning the chain dynamics, there is
only the inference from the Rouse and tube mod-
els that �N should follow the temperature and
pressure dependences of segmental relaxation.

We recently proposed a generalized scaling of
�� data obtained for both temperature and pres-
sure. It is based on an inverse power law, 
(r) 	
r�3	, for the repulsive potential, where r is the
intermolecular separation and 	 is a material pa-
rameter.54 The underlying idea is that the liquid
structure is primarily determined by repulsive
forces, with the attractive forces serving as a
mean background potential that holds the mole-
cules together.55,56 With this form, in principle all
thermodynamic properties of the material can be
expressed as a function of the variable T�1V�	.57

In practice, a power potential is of more limited
validity. For the equation of state, for example, it
will break down because of neglect of the attrac-
tive part of the intermolecular interactions. We
have found that dynamic quantities related to the
glass-transition relaxation, such as ��, the ionic
conductivity, and the viscosity of monomeric glass

formers, can be expressed as a single function of
the variable T�1V�	.45 Moreover, the magnitude
of 	 is correlated with the relative contribution of
temperature and volume to the local dynamics.
For the extreme cases, hard spheres (volume-
dominated) and thermally activated dynamics, 	
� 
 and 0, respectively. For various glass form-
ers, including van der Waals molecules, associ-
ated liquids, and polymers, we find 0.1 � 	 � 9,
which parallels the magnitude of ����/�P. An expo-
nent as small as 0.1, as found for strongly associ-
ated liquids, is unrealistic, reflecting the inade-
quacy of a repulsive power potential for fluids
characterized by extensive hydrogen bonding.

If this scaling applies to the global dynamics,
which has not heretofore been shown, our results
suggest that (1) for each polymer, �� and �N
should exhibit the same scaling because we find
���,��/�P � ���,N�/�P and (2) because the relative
effects of the temperature are roughly comparable
for PI and PPG, their respective scaling expo-
nents should be similar.

In Figure 3, �� and �N for the two polymers are
displayed as a function of T�1V�	. For both
modes, the same value of 	 causes the relaxation
times for various temperatures and pressures to
fall on a single curve. Over as much as 8 decades,
the superpositioning is quite good. We also find
that the scaling exponents, 	 � 2.5 � 0.35 for PPG
and 	 � 3.0 � 0.15 for PI, are close, in agreement
with the approximate equivalence of their respec-
tive ����/�P values. These values of 	 are fairly
small, reflecting the softness of the intermolecu-
lar potential for these polymers.

CONCLUSIONS

For two barely entangled polymers, at tempera-
tures for which the normal-mode relaxation time
is 0.01–0.1 s, the respective temperature depen-
dences of the segmental and normal modes are
governed very similarly by thermal energy and
volume. This result is congruent with an implicit
assumption of the Rouse and tube models, that
the relevant friction coefficient for the global dy-
namics can be identified with the friction coeffi-
cient for local segmental relaxation. However, our
results ostensibly contradict the fact that the seg-
mental and chain modes have different tempera-
ture7–10 and pressure dependences.30,31 However,
the same relative influence from thermal energy
and volume on �� and �N does not require the
magnitude of the change induced in either relax-
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ation time to be the same. For segmental relax-
ation, the effects may be amplified, for example,
by intermolecular interactions, in the manner de-
scribed by the coupling model.11,58

Similar to the literature results for segmental
relaxation near Tg in other polymers, we find for
both PPG and PI that thermal energy exerts a
more significant effect on the temperature depen-
dence of �� than the volume does. This implies a
relatively soft intermolecular potential, and in-
deed, superpositioning of the relaxation times is
achieved with a small value of the scaling expo-
nent. This scaling exponent comes from an in-
verse power form for the intermolecular potential.

Finally, we note that our analysis was carried
out for temperatures well above Tg. At these high
temperatures, the segmental relaxation times are
small (�� � 1 s). When �� becomes short, the
temperature dependences of the segmental and
chain modes are expected to be comparable.10

However, as seen in these data, differences in
pressure dependences are still observed. It would
certainly be interesting to extend the experimen-
tal work to lower temperatures.

This work was supported by the Office of Naval Re-
search. The authors thank G. M. Poliskie and K. L.
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