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ABSTRACT: The existence of a discontinuity in the modulus of

rubber as the strain transitions from compression to extension

is strongly suggested by multiple experiments. Classical rubber

elasticity theories, however, do not admit such behavior. Here,

we investigate a modification of the assumptions of classical

elasticity theory to reconcile this discrepancy. We present an

analysis of the consequences of assuming that chain forces are

nonzero only for chain extension relative to the unstrained

state, in contrast to the classical elasticity theory, which

assumes that the chain force is directly proportional to the

chain end-to-end distance (an entropic spring). Assuming an

affine transformation of the network node coordinates, we

derive two modulus discontinuity factors between compression

and extension: D1, based on the differing number of network

chains being extended and D2, based on the average differen-

tial chain extension. The discontinuities arise due to geometric

effects, inherent in the affine transformation between compres-

sive and extensive strains. We find that D1, the ratio of the

numbers of participating chains (compressive/extensive ¼ 1.37),

suffices to account for the experimentally observed modulus

discontinuity in natural rubber of 1.34. VC 2010 Wiley Periodicals,

Inc. J Polym Sci Part B: Polym Phys 48: 1795–1798, 2010
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BACKGROUND

Classical models for rubber elasticity assume that the elastic
response of a rubber network is due to the tendency of the
individual chains to seek conformations with the most prob-
able end-to-end distances, R. For idealized chains, in one
dimension a Markov walk analysis shows that the end-to-
end distance distribution is Gaussian, with its peak at R ¼ 0.
Hence, the most probable end-to-end distance is also zero.
For chains free to move in three dimensions, the distribution
peaks at a finite value of R, due to the added weighting fac-
tor of the surface area of the sphere of radius R, which con-
strains one end of the chain. However, for a chain in a rub-
ber network, having both ends fixed to crosslink nodes, the
first condition is thought to apply. The equilibrium for net-
work chains is their configuration at the moment of network
formation, which would be the three-dimensional value of R
> 0. The entropy S, is taken as the derivative of the end-to-
end distance distribution function, and the change in free
energy is given by TdS. For a chain connecting two network
nodes, the retractive force, assumed to act along the vector
defined by the connected nodes, is given by1:

F
*

chain ¼ 3kT

Nb2
~R (1)

where k is Boltzman’s constant, T is the absolute tempera-
ture, N is the number of uncorrelated beads on the chain,

each of length b, and R is the end-to-end distance. This force
is commonly referred to as the ‘entropic spring’ as it is pro-
portional to R.

Numerous network models, based on this chain force, have
been developed over the past 70 years. These models usually
stipulate uniform chain lengths, chain orientations that are
symmetric with respect to the strain axis and enforce an
affine transformation of the node coordinates in response to
compressive or tensile strains. The simplest of these affine
network models, due to Kuhn,2 relates the engineering stress
to the extension factor k as:

reng ¼ Gðk� 1=k2Þ; (2)

where G is the shear modulus. This expression is commonly
referred to as the ‘‘reduced force’’ formula. Although the
model is known to disagree with experiment at moderate and
high extensions, it is considered to be accurate for small
extensions. The second term in eq 2, which results from the
assumption of incompressibility, is due to the idealized net-
work chains that are initially aligned perpendicular to the
strain axis. Under an affine transformation, their end-to-end
distances decrease and, because the chain force is assumed to
be a perfect spring, these chains tend to assist the applied
stress, that is, tend to ‘push’ the network along the strain axis.

The modulus, defined as the derivative of the stress with
respect to the strain (k�1), may be obtained by
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differentiating eq 2. It is clearly continuous at k ¼ 1. The
Kuhn model assumes affine behavior; however, the opposite
assumption, referred to as phantom chains3–5 similarly pre-
dicts continuity of the modulus at k ¼ 1. To our knowledge,
all rubber elasticity theories predict that the modulus is con-
tinuous at zero strain. Experiments on both poly(dimethylsi-
loxane)6,7 and natural rubber8–13 however, strongly suggest
that the modulus is discontinuous at zero strain.

It is likely that some modification of the classical elasticity
theories is needed to reconcile these experiments. Here, we
will examine the consequences of assuming that network
chain forces are positive and nonzero only for extensions
beyond the initial end-to-end distance. That is, we shall
assume that chains whose end-to-end distance decreases in
response to an affine transformation of the network nodes
do not contribute to the elastic stress. We shall refer to this
as the ‘‘Relaxed Chain Assumption.’’ This represents a signifi-
cant departure from the classical theories.

GEOMETRIC PROPERTIES OF THE AFFINE TRANSFORMATION

In cylindrical coordinates, an arbitrary network chain con-
necting two crosslinks is commonly represented by its end-
to-end vector R, with one end assumed to be at the origin,
and having an initial length, R0. The vector R may be decom-
posed into two orthogonal projections: z, along the strain
axis and r, perpendicular to the strain axis:

z ¼ R0 cos h

r ¼ R0 sin h;
(3)

where h is the angle between R and the strain axis. For an
extension factor of k, an affine transformation of the network
node coordinates is defined as:

z0 ¼ kz

r0 ¼ r=
ffiffiffi
k

p (4)

The end-to-end distance transforms as:

R2ðkÞ ¼ k2z2 þ r2=k (5)

We define a chain extension factor for an arbitrary chain as:

E2ðkÞ ¼ R2ðkÞ=R2
0 ¼ k2 cos2 hþ sin2h=k: (6)

Depending on the angle, the chain extension may be either
greater or less than one. At some critical angle hc, the chain
extension is exactly 1; the chain vector undergoes a pure
rotation. We can calculate hc at k ¼ 1 by first solving eq 6
for E, then taking its derivative with respect to k.

Eðk; hÞ ¼ k2 cos2 hþ sin2 h=k
� �1=2

; (7)

@E

@k
¼ 1

2
½2k cos2 h� sin2 h=k2�½k2 cos2 hþ sin2 h=k��1=2: (8)

We compute the critical angle by setting the derivative of the
chain extension factor to zero, and solving for h, which may
be evaluated at k ¼ 1.

k cos2 h� 1

2k2
sin2 h ¼ 0: (9)

hc ¼ tan�1
ffiffiffiffiffiffiffiffi
2k3

p� �
¼ 0:9553 rad: (10)

For extension (k > 1), only those network chains making an
angle < hc contribute to the elastic force. Compression (k <

1) may be thought of as 2 D expansion and, for this case,
only chains making an angle > hc contribute. The number of
participating chains is not the same for the two cases. If we
assume that all orientations of network chains are equally
likely and that all chains have been translated to share a
common origin, we can calculate the fraction of chains that
are stretched during extension by integrating the fraction of
solid angle subtended by chains having angles <hc.

ftension ¼
Zhc
0

sin hdh ¼ 0:42271: (11)

The analogous factor for compressive strains, fcompression, can
be obtained by performing the integral in eq 11 between hc
and p/2, or simply as 1�ftension ¼ 0.57729. We define our
first modulus discontinuity factor, D1, as fcompression/ftension ¼
1.366. Note that, in calculating D1, we have made no
assumption about either the direction or form of the chain
forces, only that the stress is proportional to the number of
chains stretching.

Our second modulus discontinuity factor, D2, is motivated by
the angular dependence of the chain extension factor defined
by eq 6. As is clear from eqs 3 and 5, under an affine trans-
formation, the change in the chain end-to-end distance, and
hence the average chain force must depend on the initial
angle that the chain end-to-end vector makes with the strain
axis. In general, one would not expect that the average chain
extension factors (and forces) to be the same in compression
and tension, and this would also contribute to a discontinu-
ity in the modulus at zero strain. To calculate average chain
extension factors, we make the simplest assumption about
the form of the force function, that it is a linear spring
(spring constant c), analogous to classical elasticity theory.
However, unlike classical elasticity theory, we shall assume
that the displacement variable is defined as the change in
the end-to-end distance with respect to the initial end-to-end
distance, R0, not zero. With the additional requirement that
the force be zero for negative displacements, the chain force
is defined as

F
*

chain ¼ c~r; r > 0

~Fchain ¼ 0; r � 0;
(12)

where r ¼ R � R0 and the direction of the force is along the
chain end-to-end vector. To calculate these average forces,
we integrate the chain extension, given by eq 8, over the
appropriate solid angle limits. As we are interested in the
modulus at zero strain, we may set the extension factor k
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to 1. With this substitution in eq 8, we define the angle-
dependent chain extension factor as:

GðhÞ ¼ 1

2
½2 cos2 h� sin2 h�: (13)

Then the average chain extension (and force) for a sample
undergoing tensile strain is given by

gtension ¼ 1
h2 � h1

Zh2
h1

GðhÞ sin hdh: (14)

Expanding the expression for G(h), we have

gtension ¼ 1

h2 � h1

Zh2
h1

cos2 h� 1

2
sin2 h

� �
sin hdh; (15)

with limits of integration of zero to hc. An analytic solution
for eq 15 can be found in most tables of integrals [Dwight]

gtension ¼ 1

h2 � h1
� 1

3
cos3 hþ 1

2

1

3
cos3 h� cos h

� �� 	h2
h1

: (16)

Using the value for hc, obtained in eq 10, we calculate gtension
to be 0.2015. The average chain extension for compressive
strains is also obtained from eq 16, with integration limits of
/c and p/2; gcompression ¼ 0.3127. We define the second
modulus discontinuity factor, D2, as the ratio of the average
chain extension factors, gcompression/gtension ¼ 1.552. If our
assumption that the retractive force of a chain is directed
along its end-to-end vector is correct, then we would expect
the modulus discontinuity to be the product of the two fac-
tors, D1 � D2 ¼ 2.12.

COMPARISON WITH EXPERIMENT

The measurements of Mott and Roland9 provide well charac-
terized experimental data for comparison. Using natural rub-
ber (cis-1,4-polyisoprene) with two parts per hundred dicu-
mylperoxide (corresponding to a stoichiometric crosslink
density of 66 mol/m3, assuming tetra-functional crosslinks),
they measured the stress, in both compression and exten-
sion, over a wide range of strains at very low strain rate,
10�6 s�1. By gluing the ends of cylindrical samples to metal
plates, they were able to measure stress versus strain, in
both compression and extension, on the same sample. Their
data, over a wide range of extensions is shown in Figure 1.
To verify the absence of stress hysteresis, they alternately
increased and decreased the applied load. Their data clearly
show that a significant discontinuity exists in the modulus at
zero strain. Figure 2 shows the data in the vicinity of zero
strain and least squares linear fits for each side. The point of
zero strain was determined by extrapolating the stress to
zero from the compressive side and this results in a slight
discontinuity (�10 kPa) for the stress extrapolated to zero
strain from the tensile side. We believe that the stress dis-
continuity is likely an experimental artifact. From the slopes
of the linear fits (1.566 and 1.173 MPa, respectively, for com-
pression and tension), the calculated ratio of the compres-
sive modulus to the tensile modulus is 1.340, which is very
close to our value for D1, 1.366. Clearly, the first discontinu-
ity factor achieves agreement with experiment, leaving us
with the question of why the second discontinuity factor is
unnecessary. D2 required two additional assumptions: (1)
that the force was proportional to the end-to-end distance
extension factor and, (2) that the force was directed along
the chain end-to-end vector. If the retractive force is directed
along the chain tangent at the point where is connects to the
crosslink node, then the direction of the forces would tend
to be random.

FIGURE 1 Engineering stress vs. strain for natural rubber (Mott

and Roland, 1996, blue dots) and fit of eq 2 (G ¼ 0.45 MPa, red

line).

FIGURE 2 Data from Fig. 1 near zero strain and least squares

fits for compression (blue x) and for extension (red þ). The

ratio of the slopes is 1.34.
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Neither Erman and Flory6 nor Pak and Flory7 provide suita-
ble data for comparison due to an insufficient number of
data points and/or too much scatter in the vicinity of k ¼ 1.
However, both show that the reduced stress (and modulus)
seems to be smaller in tension than compression. McKenna
and Zapas8 reported a smaller modulus difference (�4%);
however, they found that the magnitude of the discrepancy
increased as the strain approached k ¼ 1.

As shown in Figure 1, classical rubber elasticity theory (eq
2) can be fit reasonably well to our experimental data, in the
vicinity of zero strain, by choosing the value of G to be 0.45
MPa. Assuming one tetra-functional crosslink per dicumyl-
peroxide molecule, this modulus would correspond to a
chain density about 36% greater than the stoichiometric
limit. So the fit of eq 2 to the data is inconsistent with the
crosslinker concentration. Although the reduced force
expression (eq 2) is continuous through zero strain, it can
exhibit an anomalous modulus discontinuity if linear fits are
made for strain regions separated by a significant gap (as is
the case for our data). If we make linear fits for the values
of eq 2 at the same set of extension factors as the experi-
mental data used in Figure 2, we obtain a stress discontinu-
ity factor of 1.21. This is significantly less than the value
obtained by linear fits to the experimental stress. We do not
believe that the observed modulus discontinuity can simply
be attributed to the strain gap between the two fit regions.

CONCLUSIONS

The experimental record strongly suggests that there is a
discontinuity in the elastic modulus in the vicinity of zero
strain. We have provided a possible explanation of this effect
for affine strains by modifying the assumptions of classic
rubber elasticity theory (the Relaxed Chain Assumption).
Based on the geometric properties of the affine transforma-
tion of network node coordinates, we obtained two disconti-
nuity factors for the modulus of rubber at zero strain, D1

and D2. The assumptions that we make about the chain
forces represent a significant departure from conventional
rubber elasticity theory. For both factors, we assumed only
that the macroscopic stress (and modulus) was proportional
to the number of chains being extended. The first factor is a
consequence of the differing number of network chains that
undergo extension depending on the type of strain imposed
on the network, compressive or tensile; more chains are
stretched for compressive strain than for tensile strain. We
made no assumption about the direction or form of the net-
work chain forces in its derivation. D1 is defined as the ratio
of the numbers of chains being extended (compressive/
extension) and its value is 1.366. This is very close to the ex-
perimental value for the modulus discontinuity in natural
rubber, 1.34.9

The second modulus discontinuity factor, D2, is defined as
the ratio of the average differential stretch of network chains
undergoing either compressive or tensile strain. For this fac-
tor, we assumed that: (1) the chain forces are proportional

to chain extensions with respect to the initial end-to-end dis-
tance, (2) the chain force is zero for end-to-end distances
less than the initial value and (3) the chain force acts along
the end-to-end vector. The value of D2 is 1.566. If both fac-
tors are correct, then the discontinuity in the modulus at
zero strain should be the product of the two, 2.12. As the
first factor, D1, suffices to account for the modulus disconti-
nuity observed in experiment, it appears that the second fac-
tor is unnecessary and must therefore be incorrect. There-
fore, one or more of our assumptions for D2 must be wrong.
The most likely candidate is the assumption that the chain
force acts along the end-to-end vector, an assumption also
inherent to classical elasticity theory.

Additional measurements of the modulus discontinuity
closer to zero strain will be necessary before we can reach a
firm conclusion about the validity of this analysis. We note
that the discontinuity factors that we have obtained assumed
only that an affine transformation of the node coordinates
occurs, and should be applicable to any network, regardless
of the polymer type or crosslink density.

This work was performed under the auspices of Los Alamos
National Laboratory, which is operated by Los Alamos National
Security, LLC, for the National Nuclear Security Administration
of the U.S. Department of Energy under contract DE-AC52-
06NA25396, and at the Naval Research Laboratory with sup-
port from the Office of Naval Research.
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There are two errors with respect to Eq. 14, one mathemati-
cal and one having to do with the underlying physics (Han-
son, D.E., Roland, C.M. Theoretical Implications of the Elastic
Modulus Discontinuity in Rubber Networks. Journal of Polymer
Science Part B: Polymer Physics 2010:48(16):1795–1798). The
normalizing factor in (h2-h1) is incorrect; it should be the
definite integral of sinh with h1 to h2. More significant is an
error in the physics where we calculated the average chain
extension factor by integrating the extension factor G(h),
which, by Eq. 6, is seen to be with respect to the end-to-end
distance R-R0. We then incorrectly associated the average
chain extension factor with the stress. The subsequent analy-
sis is also incorrect. The correct approach would involve
deriving an expression for the average the chain energy
which would be proportional to the quantity (R-R0)

2, but a
rigorous exposition for this derivation is beyond the scope of
this Corrigendum.

However, we still believe that the principal conclusion of the
paper is valid, namely that there is a discontinuity in the
stress modulus between tension and compression. We have
examined the change in the stress modulus between tensile
and compressive strains using a previously published numer-

ical network simulation model (EPnet)1–4 having chain forces
consistent with the assumptions in Eq. 12. In the region
between6 0.2% of zero strain, we predict a stress disconti-
nuity factor of 0.636 0.017 (compressive modulus divided
by the tensile modulus).
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