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Abstract
Relaxation in glass-forming substances is necessarily a many-body problem because of
intermolecular interactions and constraints. Results from molecular dynamics simulations
and experiments are used to reveal the critical elements and general effects originating from
many-body relaxation, but not dealt with in conventional theories of the glass transition.
Although many-body relaxation is still an unsolved problem in statistical mechanics, these
critical elements and general effects will serve as guides to the construction of a satisfactory
theory of the glass transition. This effort is aided by concepts drawn from the coupling model,
whose predictions have been shown to be consistent with experimental facts.

1. Introduction

In any glass-former, the intermolecular interaction potential,
V (r), plays some role in determining the dynamic,
thermodynamic, and vibrational properties at temperatures
both below and above Tg. For fundamental understanding and
predictions of the dynamic properties of glass-formers, and for
ultimately solving the centuries old glass transition problem,
it is necessary to establish a quantitative connection between
the relaxation properties of a liquid and the intermolecular
interactions among its constituent molecules. The equation
of state of the equilibrium supercooled liquid (i.e. pressure
P , specific volume υ, and temperature T relationship) is also
determined by intermolecular forces and by steric constraints
(excluded volume). In turn pressure, temperature, and volume
have significant effects on the structural relaxation time, so
that they are essential experimental variables in determining
the relaxation properties. The glass transition is usually
observed by lowering temperature or elevating pressure.
Having direct connections to relaxation and vitrification, these
thermodynamic variables had traditionally been considered as
necessary and sufficient for construction of a theory of the glass
transition phenomenon. Examples include the free volume
theory [1] and the configurational entropy theory [2], both of
which are still commonly used to rationalize experimental data.

However, intermolecular interaction does not only
underlie thermodynamic variables but also complex many-
body relaxation dynamics. The presence of the latter has only
become evident from results of experimental investigations

carried out in the last two or three decades, and thus the
limitations of free volume and configurational entropy theories
proposed five decades ago are understandable. The better
known evidence of the many-body nature of the structural
α-relaxation are [3, 4] (i) the nonexponential correlation
functions often represented by the Kohlrausch stretched
exponential function,

φ(t) = exp[−(t/τα)
1−n], 0 < n < 1, (1)

(ii) the simultaneous presence of fast and slow relaxation
molecules (i.e. dynamic heterogeneity), and (iii) the break-
down of the Stokes–Einstein and Debye–Stokes–Einstein rela-
tions. When intermolecular interactions between the molecules
studied are absent, such as for Brownian motion or the Debye
model of relaxation of molecules in dilute solution in solvents
with much higher mobility, these characteristics of many-body
relaxation disappear. This gives rise to a correlation function
that is strictly an exponential function of time. Thus, the de-
viation from exponential given by n in equation (1) is a mea-
sure of the many-body dynamics. Although the many-body
relaxation problem remains unsolved, its influence is apparent
in the relations that n has with measurable relaxation proper-
ties. One clear evidence that many-body effects are operative is
the observation that the dynamic properties of the α-relaxation
and its relaxation time τα in bulk glass-formers are governed
by or correlated with n [3, 4]. It is sufficient to cite here just
the general result found in many glass-formers. For a given
material at fixed τα, the time or frequency dependence of the
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α-relaxation is constant, independent of thermodynamic condi-
tions (different combinations of T and P). In other words, the
shape of the structural α-relaxation function or the value of n
of the Kohlrausch fit depends only on the relaxation time. Cer-
tainly, the thermodynamic theories of the glass transition do
not address the properties of dynamics related to many-body
relaxation, but this is not the only matter of concern. Most
troublesome is the likely possibility that many-body relaxation
also exerts a major influence on the α-relaxation time τα be-
yond the thermodynamic factors, T , S, P , and υ. This would
render the principal prediction of the thermodynamic theories
of the glass transition (i.e. the T and P dependences of τα and
the glass transition temperature Tg) moot. Thus, neglect of the
effects of many-body relaxation on τα in conjunction with the
thermodynamic variables is a serious matter. Even when ves-
tiges of many-body dynamics are observed, their effect is only
rationalized ad hoc but no prediction is made concerning the
direct connection of the many-body dynamics to τα .

An exception to this usual theoretical approach is the
coupling model (CM) [5–8], whose defining prediction,

τα = [t−n
c τ0]1/(1−n), (2)

links τα and the dispersion parameter n, the latter an indicator
of many-body dynamics. In equation (2), the onset time
of many-body dynamics tc is determined by the interaction
potential, which is assumed independent of T and P . The
parameter τ0 is the one-body relaxation time often referred
to as the primitive relaxation time of the CM. The primitive
relaxation time of the CM in equation (2) brings out two other
important points. First, although the α-relaxation is the focus
of studies of the glass transition dynamics, a fundamental and
thorough treatment of the problem requires consideration of
the processes preceding it, and what relations exist between
structural relaxation and its precursors. At sufficiently early
times, molecules are caged, so that they can only vibrate and
then relax within the cage. Anharmonicity of the potential
leads to some loss that persists as long as the molecules are
caged without a characteristic timescale, and hence the time
dependence of caged relaxation is a power law or logarithmic
decay of time. If a power law, the exponent has to be small
because the mean square angular or translational displacement
within the cage is always small. This ‘fast’ relaxation is the
nearly constant loss (NCL) observed in supercooled liquids,
glasses, and glassy and crystalline ionic conductors [9–13].
The local independent rotation or translation of the molecules
out of the cage as governed by the primitive relaxation time
τ0 demarcates the end of the caged-molecule NCL regime.
Starting from the primitive relaxation, the dynamics evolves
with time to involve an increasing number of molecules
with longer length-scales [14] until the terminal process with
the maximum length-scale allowed by the intermolecular
interaction is attained. This description is supported by
motions of colloidal particles at different times measured by
confocal microscopy [15], by molecular dynamics simulations
of motion of Li ions in Li meta silicate glass [16], and
the similarity of these data to those of binary Lennard-Jones
particles found by molecular dynamics simulations [17]. This
terminal many-body relaxation is identified with the structural

α-relaxation, whose time correlation function is given by the
Kohlrausch function in equation (1). Preceding the terminal
Kohlrausch α-relaxation are the earlier time processes that
include the NCL caged relaxation, the primitive relaxation,
and the intermediate many-body relaxation processes. If
these earlier time processes are independent of or bear no
relation to the terminal Kohlrausch α-relaxation, then they
are just interesting features but unimportant for consideration
of the glass transition. In reality, there are experimental
facts [3, 4, 9, 11, 18–24]3, molecular dynamics simulation
results [25], and the CM (equation (2)), which all show
that these earlier processes are related to or correlated with
properties of the primary α-relaxation. Hence, no theory is
complete unless these earlier processes are included and their
connection to the α-relaxation addressed.

The second important point related to the primitive relax-
ation time is that the intermolecular interaction represented by
its potential alone is not sufficient to solve the problem because
input of some relaxation rate at some point in time is neces-
sary to predict structural α-relaxation properties. The primi-
tive relaxation rate given by 1/τ0 is a natural choice because
it is basic and has tractable properties. Involving either rota-
tion or translation of molecules, the primitive relaxation rate is
dependent on the physical and chemical structure of the glass-
former, and this dependence is transferred to the structural α-
relaxation through the theory. These connections cannot be
established by considering only the intermolecular interaction
potential. Another natural choice is the relaxation rate 1/τβ of
the secondary relaxation that has properties mimicking those of
the α-relaxation. Such secondary relaxations are called Johari–
Goldstein (JG) β-relaxations [23]. It turns out there is no dif-
ference between the two choices because τ0 calculated from
the CM is approximately the same as τβ of the observed JG
β-relaxation in many glass-formers.

Thus, a fundamental and complete solution of the glass
transition problem must originate from the intermolecular
interaction potential and take into account both the earlier
time processes, particularly the primitive relaxation, and
the evolution of many-body dynamics terminating in the
α-relaxation. The remainder of this paper is intended to
justify these statements by presenting results from molecular
dynamics simulations, experiments, and the coupling model.
Although not rigorous, a solution of the glass transition
problem is at hand.

2. Guides from molecular dynamics simulations

Molecular dynamics simulation (MDS) is a natural way to
demonstrate that the intermolecular interaction potential V (r),
in some cases combined with steric constraints, determines the

3 The authors plot log τα versus the reduced mean square displacement
〈u2

g〉/〈u2〉 for many glass-formers and show the data approximately fall on
a master curve especially near and above Tg. We point out that this ‘universal
scaling’ result can be viewed as the result of combining logτα versus Tg/T
with 〈u2

g〉/〈u2〉 versus Tg/T . Glass-formers having larger n have both log τα

and 〈u2
g〉/〈u2〉 decrease more rapidly with decreasing Tg/T . This correlation

of the Tg-scaled T -dependence of log τα with n is well known (Böhmer et al
[24]). The other correlation of the Tg-scaled T -dependence of 〈u2

g〉/〈u2〉 with
n can be found from experiments in [3] and discussed in [11].
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dynamic properties and their dependence on thermodynamic
variables. This is because MDS starts from V (r) and all
dynamic and thermodynamic properties are obtained from
V (r) by calculation. Changes of properties due to changes of
V (r) in the simulation can elucidate which aspects of V (r)

are responsible for the observed properties of the many-body
α-relaxation dynamics.

2.1. Dynamic properties

The simplest system is the glass-forming binary mixture
of type A and type B uncharged particles of the same
mass interacting with the standard Lennard-Jones (LJ)
potential [26–28], which is a special case of the generalized
LJ potential

V (r) = [E0/(q − p)][p(r0/r)q − q(r0/r)p] (3)

with q = 12 and p = 6. The parameters r0 and E0

represent the position of the minimum of the well and its
depth, respectively, and are different for A–A, A–B, and B–
B interactions. For the purpose of investigating the change of
dynamics of the A particles with controlled change of V (r),
Bordat et al [25] developed two other models by changing
only the exponents, q and p, of the LJ potential for the A–
A interactions. They are (q = 8, p = 5) and (q = 12, p = 11)
in addition to the standard (q = 12, p = 6). The well depth
and the position of the minimum of V (r) are unchanged. The
standard (q = 12, p = 6) LJ potentials for the A–B and B–B
interactions are kept in order to retain the glass-forming ability
of the mixture. The (12, 11) LJ potential is more harmonic than
the classical (12, 6) LJ potential, while the (8, 5) LJ potential
is a flat well and exceedingly anharmonic. The (12, 11),
(12, 6), and (8, 5) potentials have been referred to as models
I, II, and III, respectively, in order of increasing degree of
anharmonicity, which can be quantified by the dimensionless
parameter ξ , defined as the ratio between the third and the
second derivatives of V (r) at the minimum position r0, and
given by ξ = V ′′′(r0)/V ′′(r0) = (p + q + 3)2/pq . The
anharmonicity parameters ξ for the three models I, II, and
III are 5.12, 6.13, and 6.4 respectively. The steepness of the
repulsive part of the A–A potential in model III, with q = 8, is
lower than the other two models. All quantities are given in LJ
units.

Dynamics have been investigated by computing the self-
intermediate scattering function, FS(Q; t) of particles A at
Q0 = 2π/r0, close to the maximum of the collective
static structure factor S(Q), for the three models. At high
temperatures, FS(Q0; t) decays exponentially to zero, a result
found before by others by MD simulations in LJ mixtures [26]
and in real glass-formers [29–31], and is a key feature of
the CM. The latter stipulates that many-body relaxation has
an onset time tc determined by V (r). If the relaxation time
of FS(Q0; t) becomes shorter than tc, many-body relaxation
is absent, and the relaxation proceeds exponentially with
time. When temperature is lowered, the dynamics slows
down and a two-step process appears composed of a first part
where FS(Q0; t) decreases toward a plateau, fS(Q0; T ), and
a second part where FS(Q0; t) decreases with a different time

dependence toward zero. This behavior is well described by the
mode coupling theory (MCT), where the height of the plateau
fS(Q0; T ) is usually called the nonergodicity parameter [32].
However, there is an alternative interpretation of fS(Q0; T )

as coming from relaxation within the anharmonic cage with
small mean square displacement 〈u2(T )〉 limited by the size
of the cage. The more anharmonic the potential, the larger is
the 〈u2(T )〉 within the cage and the lower is the plateau level
fS(Q0; T ).

From the FS(Q0; t) at each temperature, we determine
fS(Q0; T ). By fitting the second step decay of FS(Q0; t)
by fS(Q0; T ) exp[−(t/τA)1−n], the relaxation time τA and the
stretch exponent, (1 − n) are determined. For the same τA, the
nonexponentiality parameter n increases in the order of models
I, II, and III, that is with increasing anharmonicity of V (r).
An arbitrarily long τA = 4.64 × 104 was chosen to compare
the Tref-scaled T -dependence of τA of the three models. Here
Tref is the temperature at which τA(Tref) = 4.64 × 104,
and the values are 0.688, 0.431, and 0.263 for models I, II,
and III respectively. The Tref-scaled T -dependence of τA of
the three models as well as the ‘fragility’ index at constant
volume mV, calculated from d log τα/d(Tref/T ) at Tref/T = 1,
increase with the anharmonicity of V (r). The dependence of
1/ fS(Q0; T ) on T/Tref is approximately linear for all three
models, and well described by the equation 1/ fS(Q0; T ) =
1 +λ(T/Tref). A similar expression represents the dependence
of f (Q; T ) on T/Tg of real glass-formers obtained by inelastic
x-ray scattering [21]. The parameter λ increases in the order of
models I, II, and III or with anharmonicity. This tells us that
1/ fS(Q0; T ) and also the corresponding 〈u2(T )〉 within the
cage (since these two quantities are proportional to each other)
increase and their (T/Tref)-dependences become stronger with
the degree of anharmonicity. Experiments found a similar
correlation between λ and the ‘fragility’ index [21].

Summarizing the results above, the dynamics is controlled
by the potential V (r) in a systematic manner. On increasing
anharmonicity of V (r), the α-relaxation becomes more
nonexponential, the Tref-scaled T -dependence of τA becomes
stronger, the 〈u2(T )〉 within the cage and 1/ fS(Q0; T )

become larger, and their Tref-scaled T -dependences become
stronger. Since the number of particles and density are the
same, these changes are predominantly due to the change in
anharmonicity and the capacity of intermolecular coupling of
V (r). The parameters, n, mV, λ and the caged 〈u2(T/Tref)〉,
which quantify the dynamic properties, all increase with
anharmonicity of V (r), and consequently these quantities are
correlated with each other, as also found in real glass-formers
by various experimental investigations [3, 4, 11]. An example
is the correlation between the caged 〈u2(T/Tg)〉 obtained by
quasielastic neutron scattering and n [3, 11]. A glass-former
with larger n has a larger 〈u2(T/Tg)〉 at the same value of T/Tg

and rises more rapidly as a function of T/Tg, below Tg as well
as above Tg. The correlation is particularly strong when the
glass-formers are restricted to the same family.

Another molecular dynamic simulation was carried out
on a binary mixture of soft particles with interaction potential
that includes only the interparticle repulsive potential in
equation (3) and the attractive part of the potential is
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dropped [33]. For different powers q of the interparticle
repulsive potential, the results show that the diffusion
coefficients as a function of T for various values of the
exponent of the repulsive potential collapse onto a single curve,
thus showing that fragility is independent of the exponent q
characterizing the short range repulsion. This result shows
that the steepness of the potential alone does not determine the
dynamics. Comparing this with the opposite finding of Bordat
et al discussed above that fragility depends on V (r), we are
led to conclude that the attractive part of the potential and the
anharmonicity in V (r) that it produces with the repulsive part
is important in the determination of dynamic properties.

Chakrabarti and Bagchi (CB) [31] performed a molecular
dynamics simulation of an equimolar mixture of Gay–Berne
ellipsoids of revolution and LJ spheres along an isochore at a
series of temperatures down to the deeply supercooled state.
For this system with orientational degrees of freedom, CB
obtain for the ellipsoids of revolution the self-intermediate
scattering function Fs(kmax, t), and the first-and second-rank
single particle orientational time correlation functions, C1(t)
and C2(t), involving respectively the first-order and the
second-order Legendre polynomials. All three functions have
time dependences well described by the Kohlrausch form
at all temperatures. The Kohlrausch correlation time and
exponent are designated by τD(T ) and βD(T ) ≡ (1 −
nD(T )) respectively for Fs(kmax, t) where the subscript is
used to indicate self-diffusion; τ1(T ) and β1(T ) ≡ (1 −
n1(T )) respectively for C1(t); and τ2(T ) and β2(T ) ≡
(1 − n2(T )) respectively for C2(t). The values of nD(T ),
n1(T ), and n2(T ) are reproduced in figure 2 of [31]. It
can be seen from the figure that all of them are very close
to zero at high temperatures and increase as temperature
falls. At high temperatures, nD(T ), n1(T ) and n2(T ) are
nearly zero and all correlations are exponential functions
of time, and the products D(T )τ2(T ) and D(T )τ2(T ) are
nearly independent of temperature, as predicted by the Debye–
Stokes–Einstein (DSE) relation. However, as temperature
falls, nD(T ) becomes increasingly less than n2(T ) but
larger than n1(T ). These MD simulation results show that
different dynamic variables weight the effects of many-body
relaxations differently. Furthermore, the product D(T )τ1(T )

shows almost no temperature dependence. This observed
behavior of D(T )τ1(T ) with temperature poses difficulty to
the explanation for the decoupling between rotational and
translational diffusion in terms of dynamical heterogeneity [34]
because this explanation necessarily predicts enhancement of
translation diffusion over local rotation. A lesson learned from
the MD simulations is that heterogeneous dynamics is only
one of the many consequences of many-body relaxation but
it cannot replace the latter.

The MD simulations of binary LJ mixtures have not
produced evidence of the secondary relaxation. This may be
due to the particles having no rotational degree of freedom,
unlike most real glass-formers, and also the secondary
relaxation may not be sufficiently well separated from the
dominant α-relaxation. In fact, the primitive relaxation time
τ0 calculated by equation (2) from the parameters of FS(Q; t)
of model III shown in figure 2 of [25], τA(Tref) = 4.6 × 104

and n(Tref) = 0.4, and tc ≈ 4, gives τ0(Tref) = 103, and
τ0(Tref)/τA(Tref) = 2 × 10−2. Assuming, τ0(Tref) ≈ τβ(Tref),
it can be seen from the same figure that the JG β-relaxation, if
present, is located where FS(Q; t) is already decreasing with
time. Thus, it cannot be resolved and has been considered as
part of the Kohlrausch α-relaxation. The values of n(Tref) of
models II and I are approximately 0.35 and 0.30 and smaller
than n(Tref) = 0.4 of model III. For this reason, the values
of τ0(Tref) ≈ τβ(Tref) of models II and I are longer and
the β-relaxation is even more difficult to resolve than that in
model III. For example, τ0(Tref) of model I is 3.2 × 103, and
τ0(Tref)/τA(Tref) = 7 × 10−2. This comparison of τ0(Tref) ≈
τβ(Tref) for the three models can explain the longer and more
pronounced caged regime shown by the time dependence of
fS(Q0; T ) in model I than in model III (see figure 2 of [25]).
This is because the primitive or the JG β-relaxation is naturally
the process that terminates the caged regime and a longer
τ0(Tref) ≈ τβ(Tref) means that the termination occurs at longer
times.

To observe the JG β-relaxation by MD simulations it is
necessary to study glass-formers that have rotational degrees
of freedom. An example is the MD simulations of model
miscible polymer blends consisting of chemically realistic 1,4-
polybutadiene (CR-PBD) as the slow component (higher Tg)
and PBD chains with reduced dihedral barriers (LB-PBD)
as the fast component (lower Tg) [35–37]. The principal
objective of the simulation is to study the change of dynamics
of the fast LB-PBD component with increasing concentration
of the slow component in the mixture. Intramolecular and
intermolecular potentials are maintained constant, but the
constraints imposed by the relatively immobile CR-PBD on the
dynamics of LB-PBD increase with increasing concentration
of CR-PBD, with the effects elucidated by the simulations.
Both the α- and the JG β-relaxations of LB-PBD were found
in the mixtures. An increasing presence of the slow CR-PBD
component leads to a strong increase of the α-relaxation time
τα, accompanied by an increase of breadth of the α-dispersion
or decrease of the stretch exponent of the Kohlrausch function
(equation (1)) used to fit the correlation function. Part of
the broadening is due to concentration fluctuations in some
of the mixture, but beyond it the increase of intermolecular
constraints contributes to the broadening by increasing the
coupling parameter n in the context of the CM [36, 38]. On the
other hand, there is negligible change of the relaxation time,
τβ , of the β-relaxation, which is understandable because it is
a local and independent relaxation process and the chemical
structure of the two components is very similar. In fact, in
this case, the energy barrier to be overcome for the rotational
motion is dominant over the intermolecular potential. The
resulting monotonic increase in the separation between the α-
and the JG β-relaxations of LB-PBD is correlated with the
monotonic increase of n. Also, one can show from the T -
dependences of τα of LB-PBD with 90% and 50% of CR-
PBD in figures 10(b) and (c) of [36] that the dependence
of τα on the scaled temperature Tref/T (i.e. ‘fragility’) is
stronger in the mixture with more CR-PBD or intermolecular
constraints. Here Tref is defined by τα(Tref) = 105 ps for the
two mixtures. The fact that intermolecular constraints rule

4
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the dynamics is supported by results of systematic changes
of dynamics with increase of intermolecular constraints and
hence the presence of correlations between n, m, and the ratio
τα/τβ . These results from MD simulations are fully compatible
with the experimental data of mixtures of small molecule glass-
formers [38–41], and polymer blends [42–44], which have
been explained by the CM [37, 38, 43–45]4.

2.2. Dependence on thermodynamic variable, T, P, υ and S

It is obvious that T , P , υ, and S influence the relaxation time
τα or transport coefficients such as diffusion constant D and
viscosity η. Instead of using free volume and configurational
entropy, another approach is to express them as a function
F of the product of the specific volume υ and T , with the
former raised to a material specific constant γ , e.g. log τα =
F(Tυγ ) [46–51]. The scaling exponent γ is a measure of
the effect of specific volume (or density) in its effect on
the relaxation rate, relative to that due to temperature. MD
simulations of the binary LJ mixtures have been performed
with potentials given by equation (3) with p = 6 but different
values of q over the range 8 � q � 36 [52]. The results
show that D is a function of T υγ , and γ increases with q ,
being related to the steepness of the repulsive part of V (r),
evaluated around the distance of closest approach between
particles. Therefore, the MD simulations demonstrate that the
potential V (r) also determines the dependence of the dynamics
on thermodynamic variables expressed in terms of the product
Tυγ . Evidently, with p fixed, a steeper repulsive potential
(larger q) has a more harmonic V (r). These results from
simulations of the LJ mixtures can be summarized as larger
γ is associated with more harmonic V (r). A steeper repulsive
potential and deeper potential well makes τα more sensitive
to density than temperature, and thus gives larger γ . Larger
γ means the glass-former is more sensitive to density change,
and this implies reduced Tg-scaled temperature dependence of
τα if density is kept constant and hence smaller mV. Thus it is
easy to understand why γ correlates with 1/mV as found for
real glass-formers [53].

3. Guides from experiments

The Kohlrausch stretched exponential function (equation (1)),
usually considered as the indicator of many-body relaxation,
gives way to the linear exponential function at high
temperatures where the relaxation time becomes comparable
to or shorter than some time tc. At lower temperatures, the
Kohlrausch form of the observed relaxation or correlation
function is seen but only at times longer than tc. At times
before tc, the relaxation function has the exponential form.
This property was seen by MD simulations and mentioned
in the previous section. Quasielastic neutron scattering

4 In this paper, we pointed out that τβ from simulation (and hence also τ0)
is only a little more than a decade longer than tc = 2 ps. In this case, the
relation, τα = [(1 − n)t−n

c τ0]1/(1−n) ≈ [(1 − n)t−n
c τβ ]1/(1−n), obtained by

using the continuity of relaxation rate across tc, is more appropriate. Thus,
these equations of the CM should be used to test the simulation data against
the CM, and result is good agreement with the MD simulation data.

experiments have found the same property in real glass-
formers [54, 55], and provided 2 ps as the approximate value
of tc for molecular glass-formers. This crossover property
is found also in other many-body relaxation systems besides
glass-formers [7, 56–62], and hence it is a general property.
The magnitude of tc depends on the intermolecular potential
V (r). A weaker V (r) has longer tc, as evidenced by several
examples that are summarily discussed in [7]. This is one of
several indications from experiments that V (r) determines the
dynamics of many-body relaxation.

Carbon based glass-formers that have rigid phenyl or
benzene rings have stronger intermolecular constraints than
glass-formers comprised of flexible linear carbon bonds. For
polymers, we can compare polystyrene with polyisobutylene,
and for small molecular glass-formers 1,2 diphenylbenzene
(OTP) with glycerol [3]. Stronger intermolecular constraints
yield larger n and larger isobaric steepness index m P .
However, the correlation between n and m P can break down
if the glass-formers have widely different chemical structures.
This is because while n is solely determined by many-body
relaxation dynamics, m P depends also on thermodynamic
variables, which can vary greatly with chemical structure.

If we consider the Kohlrausch nonexponentiality param-
eter n as an indicator of the many-body α-relaxation, then,
the experimental fact of the invariance of the dispersion of
the α-relaxation to changes in the combinations of pressure
and temperature at constant τα is strong evidence for the α-
relaxation being controlled by V (r) and intermolecular con-
straints [63, 64]. This is just one of the recent experi-
mental facts showing that n governs the properties of the
α-relaxation of glass-formers in bulk, as well as in nano-
confinement [3, 64].

Experiments also show the fundamental importance of the
primitive relaxation or the JG β-relaxation, their relation to
the α-relaxation, and their dependence on the intermolecular
potential V (r) and intermolecular constraints. The strong
empirical correlation found between n and the ratio τα/τβ or
τα/τ0 at a predetermined value of τα is the first indication of
their fundamental importance [9, 18, 23, 65]. Glass-formers
with larger n have a larger ratio of τα/τβ for the same τα .
This correlation is predicted by the CM equation (2) and
τ0 ≈ τβ , as verified for many glass-formers [3, 9, 18, 23].
Together they yield τα/τβ = (τα/tc)n , which increases
monotonically with n since usually (τα/tc) � 1. This result
can be restated as longer τβ for glass-formers having smaller
n for the same τα . The temperature dependence of τβ is
Arrhenius in the glassy state where T < Tg. However,
this Arrhenius temperature dependence changes to a stronger
dependence at temperatures above Tg, as proven by several
experiments where τβ was directly determined from clearly
resolved dielectric JG β-loss peaks without using any fitting
procedure [39–41, 66, 67]. Some have used the so-called
‘Williams ansatz’ to fit the dielectric spectrum of unresolved
JG β-relaxation and concluded that τβ has the same Arrhenius
T -dependence above and below Tg. This conclusion is
dubious because the Williams ansatz assumes that the JG β-
relaxation and the α-relaxation are independent processes, but
NMR experiments [19] have proven otherwise. Moreover, for
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some systems, the deviation of T -dependence of τβ from the
Arrhenius behavior of the glassy state was found also by using
a fitting procedure following the Williams ansatz [40]. In
general, the change of T -dependence of τβ mimics that of τα

as observed when crossing Tg.
The JG β-relaxation or the primitive relaxation (relaxation

time) of the CM is naturally the process (time) that terminates
the caged relaxation dynamics. The latter is manifested either
as a plateau in the correlation function FS(Q0; t), a nearly
constant loss (NCL) in the imaginary part of the susceptibility
χ ′′(ω), or a small 〈u2(t)〉 as limited by the cage size. It has also
been seen in several glass-formers including OTP and salol by
the optical heterodyne detected optical Kerr effect as a power
law decay with temperature independent exponents close to
−1 of the time derivative of the orientational correlation
function [12]. At any fixed value of (T/Tg), glass-formers
with smaller n have longer τα(T/Tg) if the correlation of n
with the steepness index m of the Tg-scaled T -dependence of
τα holds. This means that a larger T/Tg is needed to have
the same τα for glass-formers with smaller n. In concert with
the aforementioned property of longer τβ(T/Tg) for the same
τα(T/Tg) in glasses with smaller n, this means that a much
larger T/Tg is required to have the same τβ and the same
length of the caged dynamics. This explains why the NCL
was seen in polyisobutylene (a polymer with small n = 0.45
near Tg = 200 K) up to 290 K corresponding to T/Tg =
1.45 [10, 11]. The NCL is also preeminent in non-fragile glass-
formers having small n such as B2O3 [68] and ZnCl2 [69, 70]
and this is also the reason why the MCT cannot explain the
caged relaxation in these cases.

The NMR experiment showing that suppressing part of
the JG β-relaxation has a consequence on the α-relaxation
is direct evidence of an intimate relation between the two
processes. Other indications include the T -dependence of
the relaxation strength of the JG β-relaxation having an
elbow shape when crossing Tg mimicking that of volume,
enthalpy, and entropy [22, 67], and the increase of the JG β-
relaxation time τβ with applied pressure P [23, 63, 64]. These
properties reveal that, like the α-relaxation, the JG β-relaxation
is sensitive to changes in thermodynamic variables including
pressure, volume, and entropy, and not just temperature as
commonly believed.

To illustrate this, we present some recently acquired
experimental data that show the fundamental nature of the JG
β-relaxation and its inseparable relation to the α-relaxation.
The data are from dielectric relaxation measurements of
the glass-forming epoxy resin, poly(phenyl glycidyl ether)
(PPGE), on varying both temperature and pressure P . PPGE
has two secondary relaxations. Shown in figure 1 are the
dielectric loss data at T = 262.8 K and four different pressures,
0.1, 300, 500, and 600 MPa. The slower β-relaxation resolved
at elevated pressures is the JG relaxation because it shifts
to lower frequencies with increasing P even in the glassy
state. However, the faster γ -relaxation is invariant to P above
and below Tg [23]. Figure 2 presents the τα and τβ as a
function of P at constant T or as a function of T at constant
P . The fit by the Vogel–Fulcher–Tammann–Hesse (VFTH)
equation to the measured τα(T ) at constant P is extrapolated

Figure 1. Dielectric loss spectra (symbols) of PPGE measured under
isothermal conditions (263 K) at different values of applied pressure
as indicated in the figure. The continuous line highlights the
contribution of the JG β-process at 500 MPa.

to 10 s to obtain a reference temperature Tref(P) operationally
defined as τα(Tref(P)) = 10 s. The analog of the VFTH
temperature dependence for the pressure dependence is used
to extrapolate the data of τα(P) at constant T to the reference
pressure Pref(T ) defined similarly by τα(Pref(T )) = 10 s.
The Arrhenius dependence on T and the linear dependence
on P of logτβ are used to determine its values at Tref(P)

and Pref(T ) respectively. These values of τβ are approximate
because the T - and P-dependences of τβ are known to be
stronger in the equilibrium liquid state [23, 64]. Nevertheless,
they all lie within the range of relaxation times indicated by
the black rectangle drawn near the left y-axis. They differ
from each other by no more than a factor of 3, which can be
considered equivalent within the errors of the extrapolations.
The result shows that at τα = 10 s, τβ is located at about
5 × 10−6 s, independent of the combinations of P and T . This
demonstrates the intimate relation between the JG relaxation
and the α-relaxation, which is unchanged by variation of
density or temperature. The shape of the α- loss peak is also
the same for different combinations of P and T , a special case
of the general behavior [63, 64]. The fit by the Kohlrausch
function gives n = 0.54 [71] when τα = 10 s. The primitive
relaxation time τ0 as calculated by equation (2), from τα =
10 s, n = 0.54, and tc = 2 ps, is 1.4 × 10−6 s, which is
comparable to the experimental values of τβ . Vitrification of
PPGE from the liquid state to the glassy state starting with the
same Pl and Tl and ending with the same Pg and Tg show that
the JG relaxation spectrum and relaxation time depend on the
path taken [72]. Also, near Tg, τβ increases with aging time.
These behaviors of the JG β-relaxation of PPGE indicate that
it is similar and thus related to the α-relaxation, although the
magnitudes of these effects is smaller. Finally for PPGE, using
the PυT equation of state [73], the data of τα measured for
different P and T can be scaled to show their dependence on
the product variable, Tυγ , with γ = 3.45 (figure 3).

The above discussed the similarity of properties of the
JG β- and α-relaxations and their relation as found in other
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Figure 2. Plot of the structural α- (closed symbols) and JG β- (open symbols) relaxation times of PPGE against pressure at constant
temperature (left panel), and against reciprocal temperature at constant pressure (right panel). The thick short line located near the extreme
left y-axis indicates the range of variation of τβ obtained at Pref and at Tref by extrapolation of T - and P-dependences established by data of τβ

in the glassy states respectively.

Figure 3. Dielectric α-relaxation times for PPGE obtained at
different isobaric and isothermal conditions (as indicated) plotted
versus the reciprocal of the product of specific volume, raised to the
power of 3.45, and temperature.

(This figure is in colour only in the electronic version)

glass-formers. In passing, we mention the two simultaneous
properties observed on varying the combinations of P and
T while keeping τα constant: (1) the ratio τα/τβ and (2)
the dispersion of the α-relaxation are both invariant. In
PPGE these two properties were observed at τα = 10 s after
extrapolation. In other glass-formers such as picoline [74] and
quinaldine [75] dissolved in tristyrene, these two properties
have been observed at several τα above Tg. Thus, these
extraordinary properties are general. From the invariance of
the ratio τα/τβ at constant τα and the T υγ -dependence of τα ,
it follows that τβ also is a function of T υγ albeit its functional

form, fβ(T υγ ), is different from fα(T υγ ) of τα. Moreover,
fβ(T υγ ) is a weaker function of T υγ than fα(Tυγ ), which
can be inferred from the well known fact that the ratio τα/τβ

increases with increasing τα . The importance of this result
is that the Tυγ -dependence of the relaxation rate is inherent
to the JG β-relaxation, which has transpired long before the
α-relaxation commences. From this, the origin of the T υγ -
dependence of molecular mobility may be attributed to the JG
β-relaxation. The stronger T υγ -dependence of τα than τβ is
due to its many-body nature, which magnifies all effects [14].

Additional support for this statement comes from
dielectric relaxation measurements obtained for various
T and P on polypropylene glycol, 1,4-polyisoprene and
poly(oxybutylene) [76, 77]. Both the primary α-relaxation
time τα and the normal mode relaxation time τn were shown
to be functions of T υγ with the same γ , but fn(T υγ ) of τn is
weaker than fα(Tυγ ). Such a result is consistent with the CM
when applied to polymer viscoelasticity [78]. In this theory, the
friction factor for the normal modes of unentangled polymers
is given by the friction factor of the primitive relaxation. Since
the primitive relaxation has been linked to the JG β-relaxation,
it follows that fn(T υγ ) of τn of unentangled polymers is the
same as fβ(Tυγ ). The polymers studied in [76, 77] are not
ideally unentangled and there is residual coupling between the
normal modes. Nevertheless, the weaker dependence of τn on
Tυγ than τα has been explained by a primitive friction factor
that is also a function of T υγ and is weaker than that of τα . For
details, see [79].

4. Guides from concept and prediction of the
coupling model

In the previous two sections, we laid out the evidence
from MD simulations and experiments on real glass-formers
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that the intermolecular potential V (r) and intermolecular
constraints are the origin of the dynamics, as well as the
thermodynamic properties of glass-formers. The dynamics
includes caged relaxation at short times, the JG β-relaxation
at intermediate times, and the many-body relaxation that
builds up with increasing time, terminating at the structural
α-relaxation with a correlation function described by the
Kohlrausch function. Many-body relaxation is an inescapable
consequence of intermolecular interaction and constraints
between molecules dictated by V (r). Since all dynamic and
thermodynamic properties come from the same origin, it is
unsurprising that the parameters characterizing them are found
to be correlated, particularly when glass-formers belonging
to the same chemical class are considered. Among the
parameters, the nonexponentiality parameter n appearing in the
exponent of the Kohlrausch correlation function (equation (1))
for the α-relaxation is a direct measure of the degree of many-
body relaxation dynamics. This is supported by the findings
discussed in the previous sections that the value of n (1)
either governs or correlates with various properties of τα , (2)
is invariant to changes in the combinations of pressure and
temperature while maintaining τα constant, and (3) determines
the relaxation time τβ of the JG β-relaxation relative to τα .
Despite these well documented empirical facts showing the
relevance of the time/frequency dispersion of the α-relaxation
or n to the dynamics of glass transition, most theories of glass
transition do not take it into consideration.

The fundamental importance of the JG β-relaxation is
indicated by (4) its ‘universal’ presence in all glass-formers
whether or not it can be resolved, (5) the invariance of the
ratio τα/τβ to changes in combinations of P and T while
maintaining either τα or τβ constant, (6) the change of T -
dependence of τβ on crossing Tg, mimicking the behavior of
τα, (7) its shift to longer times on physical aging below Tg,
(8) the change in T -dependence of its relaxation strength on
crossing Tg, mimicking that of enthalpy, volume, and entropy,
(9) the interdependency of it and the α-relaxation as shown by
NMR, and (10) τβ sets the upper bound of the time regime of
the caged relaxation. Again, in spite of these indications, most
theories of glass transition do not consider the JG β-relaxation
to play any important role in glass transition.

The coupling model (CM) is different from most if not all
other theories of glass transition in the following ways. First
of all, as a disclaimer, the CM cannot directly predict τα and
its T -dependence for a given material from quantities such as
free volume as in the free volume theory or the configurational
entropy as in the Adam–Gibbs theory. Nevertheless,
conceptually it starts with the intermolecular interaction
potential V (r) in either the original semiclassical approach of
1979 [5] or the subsequent phase-coupled oscillator model [6].
The latter emphasizes nonlinear Hamiltonian dynamics (chaos)
originating from an anharmonic potential. These are certainly
not solutions of the many-body relaxation problem, but
they have emphasized the effect of many-body dynamics in
slowing down the relaxation rate in addition to that due
to lowering temperature. The starting point is the local
and independent relaxation called the primitive relaxation
and the consideration of how intermolecular interactions

slow down the primitive relaxation rate 1/τ0 by many-body
processes. It was shown exclusively for the terminal α-
relaxation that it has the Kohlrausch stretched exponential
time dependence (equation (1)), n increases with stronger
intermolecular interaction, and its relaxation time τα is related
to τ0 by equation (2). The time tc appearing in equation (2)
is the time before which the Kohlrausch function no longer
holds because the effects of intermolecular interactions become
operative only after tc, the magnitude of which depends on
V (r) [7]. From equation (2) we can see immediately that the
properties of τα are governed by n. The dependence of τα

on any parameter Q is derived from that of τ0(Q) according
to τα(Q) ∝ τ0(Q)1/(1−n). From this relation, not only can
one explain the often anomalous Q-dependence of τα from
the transparent Q-dependence of τ0, but also that various
dependences of τα are correlated with n and with each other.

The primitive relaxation is identifiable with a local
secondary relaxation of the JG kind because it involves
the entire molecule and is intimately related to the α-
relaxation [23], and therefore the approximate relation, τ0 ≈
τβ is expected as verified repeatedly by experiment in many
glass-formers. Replacing τ0 by τβ in equation (2), the resulting
approximate relation

τα(T, P) ≈ [t−n
c τβ(T, P)]1/(1−n) (4)

explains the properties (2)–(7) given in the above.
The concepts and predictions of the CM contain the

essential elements needed to build a viable theory of the
glass transition that can explain all the general and important
properties. As remarked before, the CM is not a full solution
but it can be used as a guide to solve the problem completely
and rigorously. Supported by experimental facts, it tells us that
the dependence of molecular mobility on T and P , T υγ , or
any preferred thermodynamic variables first enters into τ0 or
τβ of the primitive or the JG β-relaxation that occurs long
before the α-relaxation is formed out of the involvement of
many more molecules. It is through the many-body relaxation
that the dependence of τ0 or τβ , say T υγ , is transferred
to τα , and is magnified by many-body effects according to
equations (2) or (4). The key in these equations is the coupling
parameter n. The intermolecular potential and the density of
the glass-former determine not only the extent of the many-
body relaxation or n, but also the density dependence of
dynamics (γ parameter), the anharmonicity of vibrations, and
the isochoric and isobaric ‘fragility’ indices.

5. Conclusion

The structural α-relaxation of glass-forming substances is
naturally a many-body process because of intermolecular
interaction and constraints. Therefore properties of the α-
relaxation originate from many-body dynamics or are directly
related to the intermolecular potential and are unsurprisingly
correlated with each other. Results from molecular dynamics
simulations and experiments show close relations between
the Johari-Goldstein (JG) β-relaxation and the structural α-
relaxation in their relaxation times τα and τβ , and in various
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properties, indicating that they are not independent of each
other. JG β-relaxation time τβ is dependent on pressure P
(volume υ) and temperature T (entropy S). The experimental
results as well as the coupling model suggest that the
dependence of τα on P , υ, and T stems from that of τβ ,
and is stronger because of the many-body nature of the α-
relaxation. No glass transition theory is complete without
taking the fundamental JG β-relaxation and its relation to the
α-relaxation into account. Many-body relaxation is still an
unsolved problem in statistical mechanics. Nevertheless, basic
and general features of the dynamics are found by experiments.
These features can serve as guides for the construction of a
satisfactory theory of glass transition. The coupling model can
help in this effort because it has these features built into it, and
its predictions are consistent with experimental observations.

Acknowledgments

The work at NRL was supported by the Office of Naval
Research, and at the Università of Pisa by MIUR-FIRB
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[65] Döß A, Paluch M, Sillescu H and Hinze G 2002 Phys. Rev. Lett.
88 95701

[66] Paluch M, Roland C M, Pawlus S, Ziolo J and Ngai K L 2003
Phys. Rev. Lett. 91 115701

[67] Capaccioli S, Ngai K L and Shinyashiki N 2007 J. Phys. Chem.
B 111 8197

[68] Engberg D, Wischnewski A, Buchenau U, Börjesson L,
Dianoux A J, Sokolov A P and Torell L M 1999 Phys. Rev. B
59 4053

[69] Lebon M J, Dreyfus C, Li G, Aouadi A, Cummins H Z and
Pick R M 1995 Phys. Rev. E 51 4537

[70] Ngai K L and Roland C M 1996 Phys. Rev. E 54 6969
[71] Capaccioli S, Prevosto D, Kessairi K, Lucchesi M and

Rolla P 2007 J. Non-Cryst. Solids 353 3984

[72] Sharifi S, Prevosto D, Capaccioli S, Lucchesi M and
Paluch M 2007 J. Non-Cryst. Solids 353 4313

[73] Casalini R, Capaccioli S, Lucchesi M, Rolla P A, Paluch M,
Corezzi S and Fioretto D 2001 Phys. Rev. E 64 041504

[74] Mierzwa M, Pawlus S, Paluch M, Kaminska E and Ngai K L
2008 J. Chem. Phys. 128 044512

[75] Kessairi K, Capaccioli S, Prevosto D, Lucchesi M,
Sharifi S and Rolla P A 2008 J. Phys. Chem. B 112 4470

[76] Roland C M, Casalini R and Paluch M 2004 J. Polym. Sci.
Polym. Phys. Edn 42 4313

[77] Casalini R and Roland C M 2005 Macromolecules 38 4363
[78] Ngai K L, Plazek D J and Rendell R W 1997 Rheol. Acta

36 307
[79] Ngai K L, Casalini R and Roland C M 2005 Macromolecules

38 1779

10

http://dx.doi.org/10.1103/PhysRevLett.88.095701
http://dx.doi.org/10.1103/PhysRevLett.91.115701
http://dx.doi.org/10.1021/jp071857m
http://dx.doi.org/10.1103/PhysRevB.59.4053
http://dx.doi.org/10.1103/PhysRevE.51.4537
http://dx.doi.org/10.1103/PhysRevE.54.6969
http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.007
http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.044
http://dx.doi.org/10.1103/PhysRevE.64.041504
http://dx.doi.org/10.1063/1.2828496
http://dx.doi.org/10.1021/jp800764w
http://dx.doi.org/10.1002/polb.20287
http://dx.doi.org/10.1021/ma0476902
http://dx.doi.org/10.1021/ma050005m

