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By analyzing the experimental data for various glass-forming liquids and polymers, we find that the
nonexponentiality3, and the relaxation timeg, are commonly related: log) is an approximately linear
function of 13, followed in most cases by a crossover to a higher linear slope. We rationalize this relationship

in the recently developed elastic approach to the glass transition. The key to the observed common relationship
betweens andr is that the two quantities are governed by the same parameter, the liquid elasticity length,
de. The increase afle on lowering temperature increaseand decrease’ resulting in the observed common
relationship betweef andz. In this picture, we also discuss the crossoverg ahdr at low temperature.

Introduction because the increase of nonexponentiality and relaxation time

Cooling a liquid to obtain a glass may seem a familiar and 2'® the two signatures of glass transformation, it is natural to
conceptually simple process, yet its theoretical description 2SK if there exists a fundamental process of slowing down of
remains elusive. Such a description, as widely perceived, shouldMolecular motion that affects both quantities. If a single
provide a consistent theory for the two main properties that a Mechanism affects bofhandz, it should be reflected in a well-
liquid acquires in the glass transformation range: nonexponentiald€fined relationship between these parameters at different

relaxation and super-Arrhenius temperature dependence ofl€MPperatures in the glass transformation range.
relaxation time: In this paper, we show that a common relationship between

At high temperature, a liquid under external perturbation B andzt exists for all temperatures in _the glass tr_ansformation
relaxes exponentially fast: a relaxing quantiff) decays as ~ 'ange: logf) is an approximately linear function of A/
exp(—(t/z)), wheret is associated with the transition over a followed by a crossover to a higher linear slope. We discuss
single activation barrier. This is known as Debye relaxation. the observed behavior in the elastic picture of the glass
On lowering the temperature, relaxation changes markedly, andtransition. In this picture, the key to the observed common
is described by a stretched-exponential functig(t), [ exp(— relationship betweer and 7 is that the .twp quant'ltlles are
(7)), where 0< 8 = 112 The transition from Debye relaxation governe_d by the same parameter, the liquid elas_tlcny length,
to stretched-exponential relaxation (SER) marks the onset of der The increase afle on lowering the temperature increases
the glass transformation range. The transformation is completeand decrease resu]tlng in the observed common relationship
when, by convention, the relaxation time, increases to the betweerg andz. In this approach, we also discuss the crossovers
experimental time scale of 16000 s, corresponding to the  ©Of # andz at low temperature.
glass transition temperaturéy. In the glass transformation
range, t often increases faster than Arrhenius, and is well
approximated by the VogelFulcheTammann (VFT) lawz
= 1o exp@/(T — To)).! We have analyzed the experimental data on dielectric

p and 7 are therefore two fundamental parameters that relaxation, including our recent results, as well as earlier
describe a liquid in the glass transformation range. A challenge data’~23 At each temperatured andr were determined from
for a theory of the glass transition is to propose a description the location and width of the dielectric loss peak, respectively.
of these parameterg.andr have been discussed in a number Prompted by our recent work on the glass transifbR® we
of popular theoretical approach€$.A notable feature of these  have plotted log() as a function of J4. In Figure 1, this
approaches is thgtandz are often treated separately. One group dependence is shown for 15 different glass-forming systems.
of theories has offered the mechanism for the increasg, of Figure 1 immediately highlights our central point, namely,
and includes the AdamGibbs entropy theory,free volume that a common relationship,(3,7) = 0, can be identified for
theory; elastic models, and other approaches (for a recent the studied systems in the entire range of glass transformation.

Experimental Results for the Relationship betweerf and
T

review, see ref 1). Another group of theories has derj¥éor First, at high temperature, lag(is approximately proportional
SER (see, e.g., refs 2, 5, and 6). to 1/3. Second, as the temperature is reduced, a crossover to
In view of this, it remains unclear what the relationship another higher slope takes place.
betweens andz is, or if one exists at all. On the other hand,  Generally, presenting the data as in Figure 1 is attractive,
¥ University of Cambridge. since it does npt require scgllng ay, an'grbnrary qugﬂtlty
* Naval Research Laboratory. from a theoretical point of view. In addition to providing a
8 George Mason University. universal relationship betweghandz, the plot in Figure 1 can
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T T T_o%® T 1 parameter that describes the slowing-down mechanism. Finally,
a theory should explain the crossover to a higher slope, clearly
observed in Figure 1.

In order to rationalize the observed behavior, one requires
an approach to the glass transition that offers descriptions of
both f and r. Some of these have been proposed (see, for
example, the trapping diffusion model in ref 31). In this paper,
we discuss the observed relationship based on the recently
developed approach, which considers how a stress relaxation
mechanism of a liquid changes on lowering the temperafufé.

Relationship betweeng and r in the Elastic Theory of
Glass Transition

Glass transition is one of the most controversial problems in
4 f - condensed matter physit® Many theories have been proposed

6F ] to explain the universal anomalous properties of liquids in the
I ] glass transformation range. Only a small proportion of them

10 _W}j. ] discussed the elastic response of a liquid, whereas others
12k wv 3 proposed different parameters that control the glass transition,
10 12 14 1|6 ETE 2'0 5221 28 including volume, entropy, energy, and many otiéfBecause
I [3 o T a glass is different from a liquid by virtue of its ability to support

Kww

_ _ shear stress, we consider that stress relaxation is the central
Figure 1. log(r) vs 1f5 for 15 glass-forming systems. Upper panel:  physical property as far as the glass transition is concerned.

molecular liquids M, o-terphenyl @, salolé o, PDE? *, 4-tertbutyl : .
pyridine® v, 54% chiorinated bipheny?#, propylene carbonadlgfi- However, no theory has been able to explain the glass transition

pointing triangle, dibutylphthalaté:d, KDE;120, BMMPC2 A, 62% solely on the basis of stress relaxation or elasticity of a liquid.
chlorinate biphenyl? v, diisobutylphthalat). Lower panel: a, Recently, we have proposed how to do that. We have addressed

polyvinylacetateé? ®, polycyclohexylmethacrylat¥; m, polyvinyleth- the glass transition problem by discussing elastic fields in a
ylene!® v, bromopentan#’ Lines are guides for the eye. These liquid and considering how the stress relaxation mechanism
represent the materials for which data are available covering a broadchanges on lowering the temperatéfe?6 Below, we review

range and exhibiting “normal” behavior (i.¢. decreases with decreas- this approach and extend it in order to understand the observed
ing temperature). There are some glass-formers (e.g., NKIECHF,*° . .
relationship betweef andz.

1,4-polyisopren&’ polymethylphensiloxan#, 1-propanof and etha-
nol) for which 8 is almost constant over the supercooled regime, and o o
correspondingly there is a weak or absent crossover. In other materials Liquid Elasticity Length and the Origin of Slow

a neighboring dispersion, such as the normal mode (e.g., polyoxybu- Relaxation

tylene??) or a secondary peak (BMP¥, obfuscates accurate analysis . . o

of the a-process. For propylene glycol and glycetblog(r) changes Relaxation and flow in a liquid proceed by elementary
with 8 but does not show the linear behavior as in this figure. localized structural rearrangements, during which atoms jump

out of their cages. We call these rearrangements local relaxation

events (LREs). Because the divergence of the elastic field due
serve as a convenient comparative representation of nonexpoto a LRE is zero, it can be viewed, in a simple model, as a pure
nentiality in different systems approaching their glass transition. shear event.For this reason, we discuss the dynamics of shear

We note that the pattern in Figure 1 is extended to the domain LREs. A structural rearrangement that accompanies a LRE

of high pressure. In the dielectric spectroscopy experiment, the produces elastic shear stress which can propagate through the
increase ofr at higher pressure can be counterbalanced by an system. The important question is how does this stress affect
increase of temperature. For many systems, it has been 3hown relaxation of other LREs in the system?
that different combinations of pressure and temperature that keep Lets consider how the stresses created by remote LREs
7 constant always give the same valugfofThis signifies the propagate to a given local relaxing region in the center.

universality of the relationship betweghandz. Relaxation of the central event involves deformation of the
We also note that for the present materials there is a “cage” around the jumping atom, and therefore depends on the
breakdown of the general correlation found betwgeat T stresses that propagate from the remote LREs to the center. A
and the derivative of log} with respect taTy/T at T, fragility.?® remote shear LRE creates the elastic shear waves which include
However, this correlation is known to be only approximate, with waves of high frequency. This is because the deformation,
various exceptions having been reporié’ associated with a localized atomic jump, creates a wave with a

There is no a priori reason why the location of the dielectric length comparable to interatomic separations, and hence with a
loss peakz, should be correlated with its widtj3, Hence, the frequency on the order of the Debye frequency. At high>
observed common relationship betwgkandz in many glass- 1/r frequency, a liquid supports propagating shear waves, which
forming liquids, as shown in Figure 1, is unexpected and propagate stress and its variations from remote LRESs to the
striking. Its existence strongly suggests that SER and the VFT central point. Ift is generally defined as the time of decay of
law reflect the same slowing-down mechanism operative in the shear stress in a liqui},de) = ct gives the length of this decay,
glass transformation range. wherec is the speed of sound. Hemy gives an estimation of

Figure 1 presents a challenge for a theory of the glass the maximal range over which shear stress decays in a liquid.
transition. First, a theory should identify the slowing-down At the microscopic level, the relevancedf = cr is as follows.
mechanism in a liquid that gives both SER and the VFT law. A high-frequency shear wave from a LRE propagates stress until
The origin of the observed common relationship betwgand a remote LRE takes place at the front of the wave, at which
7 can then be sought in the dependences @fnd r on some point the wave front is absorbed by the remote LRE. Suppose
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this happens at distanek from the original LRE.dg| can be 1.8 . .
calculated from the condition of equality of the travel tirdg/
¢, and the time at which the remote LRE takes place at point 16 - .

de. This latter time is given by, because is microscopically
defined as the average time between two consecutive LRES,
and we obtairde = cr as before.
de, therefore, defines the maximal distance over which the 12
central LRE is affected by elastic stresses due to other LRES in
a liquid. For this reasorge can be called théquid elasticity ] . .
length Note that because it takes timéor the central event to 0 1 2 3
relax, its relaxation is affected by all stresses that have enoughFigure 2. 1/8 as a function of, obtained from the solution of eq 2.
time to propagate to the center, i.e., those located distence
away (after timer, the central event relaxes, and the process relaxing events induced by an increment of external stress in
repeats). In this sense, the definitidn= cr is self-consistent. the sphere of radiudg. n(t) starts from zero and increases to
To discuss howde governs relaxation in more detail, lets ?ts final valuen,. Lets consider thg current LRE to relax to be
consider the dynamics of LREs in a liquid perturbed by an N thg center of the sphere of radids. As _dlS(_:ussed above, all
external field. Some time ago, Orowan’s introduced the terms Prévious remote concordant LREs within distanigefrom the
“concordant” and “discordant” even$é:a concordant local center participate in the elastic feed-forward interaction, increas-
rearrangement is accompanied by a strain in the direction INd StressAp on the central region and hence increasihfpr
agreeing with the applied external stress, and reduces the energ$€ central LRE. Note that all stresses within a distancé.of
and local stress. A discordant rearrangement, on the other hand— ¢ have enough time to propagate to the center and affect
increases the energy and local stress. This has led to a generd/'€ relaxation of the central event (recall the self-consistency
result that stress relaxation by earlier concordant events leaddn the definition ofde). ) _ o
to the increase of stress on later relaxing regions in a system. AP can be calculated by integrating the contributions of
Goldstein applied the same argument to a viscous liguid: '€mote concordant LREs. This, together wiim) = Vo + GaAp
consider a system under external stress which is counterbalancef{Om above, give¥
by stresses supported by local regions. After a concordant LRE,
a local region supports less stress after the event than before; V(n) =V, + Vlﬂ (1)
therefore, other local regions in the system should support more n
stress after that event than befébe.

1B

14 - B

— 3
Let Ap be the increase of shear stress on a current LRE due V1= 71/20,0,Apdy” In(2d/dy)
to previous concordant LREs. I is the current number of ) ] ] o
LREs, Ap is a monotonically increasing function of The wheredj is on the order of the size of a relaxing regigns

increase of stress on a currently relaxing region increases itsthe density ofy local relaxing regions, andpy is the decrease
activation barrierV. It has been argued thitis given by the ~ Of stress due to a remote concordant LRE. .

elastic shear energy of a surrounding ligéfidChis result was Ineq 1,V depends on temperature througdh It is easy to
confirmed by the experimental data, showing that the activation SNOW that usingle = cz andz = 7o exp(V/kT) in eq 1 gives the
barrier increases with the shear enefgBecause, as discussed VFT law for V andz.?® In this picture,the super-Arrhenius
by Orowan and Goldstein, previous LREs reduce stress in thePehaior is related to the increase ofedon lowering the
direction “concordant” to the external stress, the increase of temperature as the temperature is lowered andncreases,
shear stress on later rearranging regions consistently increase§'0re LREs are involved in the elastic interaction with a given
the shear strain on them in the same direction, increasing theLRE, increasing its activation barrier.

shear energy and therefoxe The increase o¥, AV, due to

the additional stressAp, is the work, fApdg. If d, is the Relationship betweenf and

characteristic volumé& AV = Apg, and we findV = Vo + We are now set to write the equation that relgteand 7.
daAp, where Vj is the high-temperature activation barrier. The rate of LREs, ddt, is the product of the number of
BecauseAp is a monotonically increasing function ofandV unrelaxed events,n{ — n), and the event probabilityp =

= Vo + daAp, we find thatV is also a monotonically increasing  exp(V/kT). SinceV depends om (see eq 1)p depends om as
function ofn. This provides thelastic feed-forward interaction  well. Introducingg = n/n; and reduced timé/'zo, we write
mechanisnbetween LRES?

To quantify this discussion further, we consider relaxation, dq Vo tViq
induced in a liquid by a pulse of an external field. At time zero, at (1= a)exp— kT @)
stresses supported by local regions counterbalance macroscopic

stress. As relaxation proceeds, each LRE reduces stress locally Equation 2 has two parameteig/kT anda = V4/KT. We
until the macroscopic stress is relaxed by a certain finite number have recently showthat its solution is well approximated by
of LREs and the liquid comes to equilibrium. At times smaller the two-parameter SER(t) = 1 — exp(—(t/z)?). We note that,
than L/c, wherelL is the system size, external stress can be whereas depends on botiy/kT anda, 3 depends om only;
considered constant, and the stress redistribution argument othe smaller, the largers (o = 0 gives exponential relaxation,
Orowan-Goldstein applies. Alternatively, we can consider an g = 1).

external field constantly compensating for the decreases of local To find the relationship betweeghandz, we solve eq 2 for
stresses. In the resulting steady flawis a relaxation time due  different values ofy, fit the solution to the form of SER above,
to an increment of external perturbation, and can be viewed asand find that 18 = 1 + Ca, whereC is a constant (see Figure
the time of the liquid’s retardation behind an external field. Lets 2). Joining this result with/; O In(de)) O In(z) (see eq 1), we
introduce time-dependent variahi€t), the current number of  find that In) is a quasi-linear function of g/
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Figure 3. Temperature dependence of3lin salol’® T, is the
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In this picture, the key to the common relationship between
B andrt is that the two quantities are governed by the same
parameterde. As we have seen above, the increaselpbn
lowering the temperature decreagebecause it increasas
(see egs 1 and 2), and at the same time, it increabesause
the total activation barrier increases (see eq 1). This gives the
universal relationship betweef and 7z, consistent with that
observed in the experiment.

To discuss the crossover to the second higher slope in Figure

1, we note that our theory predicts the crossc¥%e?§ of both

T andp atde = L, whereL is the system size. Recall thet[]
In(de) (see eq 1). As long asl < L, V increases with
temperature, becausg increases. Whedg > L, the system
crosses over from being partially to wholly elastic, awd
becomes temperature-independ&hf] In(L) (see eq 1). When

del = L, further decrease of temperature has a weaker effect on

Trachenko et al.

pronounced crossover to the lower slope in Figure 3 gives the
crossover to the higher slope in Figure 1.

Therefore, we find that the predictions from our theoretical
approach are consistent with the crossovers seen in Figure 1.
To quantify this discussion further, we make two observations.
First, from the definition ofde, the relaxation time at the
crossover ist = L/c. If a typical experimental value df is
taken in the range of, for example;-10 mm, and ot as 1000
m/s,t at the crossover is I6—1075s. This is in a reasonable
agreement with the crossovers seen in Figure 1, at whish
inthe 10—10* s range. Second, we can evaluate the crossover
temperature as follows. Multiplying = 7o exp®/(T — Tp)) by
¢, we find dgy = aexp@/(T — Tp)). Here, 7o is the Debye
oscillation perioda is an interatomic separation of about 1 A,
and we have taken into account tlaat cro. Take, for example,
salol, for whichA = 839 K andTy = 195 K23 Usingde = L
at the crossover antd in the 1-10 mm range as above, we
find the crossover temperaturg,, in the range 241247 K.

This agrees reasonably well with the crossover temperature seen
in Figure 3, as well as with the crossover temperature.3f

We note that, for some liquids, the conditiolg = L can
hold true even at high temperati#fen this case, no crossover
is observed on lowering the temperature, consistent with some
of our experimental results. However, our picture predicts that
the dynamic crossover aft; = L would be observed in these
liquids if the measurements were extended to higher temperature.
This temperature should be high enough so thatreduces
belowL in order to observe the crossover at lower temperature.
We also note that the increase\bbn lowering the temperature
can have a contribution related to the increase of density. This

V related to, e.g., a density increase, but not to the increase ofcontribution comes in addition to the increasedgfand does

del. Therefore, this picture predicts the dynamic crossover, at
which the VFT dependence changes to either Arrhenius form
or another VFT dependence with smaller curvature. This is
consistent with experimental resufts.

The same reasoning applies to the crossovgr ¥ increases
on lowering the temperature becaise In(de) in eq 1. This
remains true as long as, on lowering the temperatiges L.
Whendg = L, Vi O In(L) and is temperature-independent.
Hence, atde; = L, Vi shows a kink. Consequently, becayse
decreases with1/kT (see Figure 2), we find thak, = L should
mark the crossover g to a lower slope. Taking salol as an
example, we observe the well-defined kink at low temperature

not depend ol or L. Hence, the crossover df = L can be
reduced depending on the relative weight of the contributions
that arise from the increase df; and density.

By comparing theoretical and experimental results, we have
found that the insights from our theory offer a consistent way
to understand and interpret the experimental data in Figure 1,
including the crossovers. At the same time, we note that our
theory also predicts that, at low temperature whgn= L,
viscosity can weakly depend on the size of a macroscopic system
(with the caveats discussed above). Whereas system size effects
were observed in nanoconfinement and thin films, no such
dependence has been reported for a macroscopic system, except

and the crossover to the lower slope (see Figure 3), consistentn our recent experimeri. It is interesting to study this effect

with the theory.

Consistent with this picture, we find that the crossovers in
Figure 1 correspond to temperatures at which bathds show
a crossover. At the crossover temperature, we finddlcabsses
over from one VFT dependence to another. Therefore, each
linear behavior in Figure 1 can be assigned to a single VFT
dependence. At about the same temperafusbpws a crossover
as well. For example, for salol, the kink ¢f takes place at
about 18 = 1.5 (see Figure 3), the same value at which the
crossover in Figure 1 is seen.

We also find that the crossover ofis less pronounced as
compared with that off. As a result, the detection of the
crossover ofzr requires derivative analystswhereas the
crossover of3 is readily seen in Figure 3. The reason for this
is explained in our theory as follow¥. andt are defined by
the sum of a constant teriy and a temperature-dependent term
V1 (see eq 1), wheredghis solely defined byr = Vi/KT (see eq
2). Hence 3 is more sensitive to the crossoverdat = L as
compared ta. As a result, the crossovers seen in Figure 1 are
due, to a large extent, to the crossover/fof for salol, the

in other systems and in more detail. We hope that our discussion
can stimulate further experimental work.

Summary

In summary, we have shown that the nonexponentiality
parameterf, and relaxation timeg, are commonly related in
the glass transformation range: lopis an approximately linear
function of 1f5, followed in some cases by a crossover to a
higher linear slope. We rationalized this relationship using the
elastic theory of the glass transition. In this picture, the key to
the common observed relationship betwgeandz is that the
two quantities are governed by the same parameter, the liquid
elasticity length,de. The increase ofdeg on lowering the
temperature increases and decreaseg, resulting in the
observed relationship. In this approach, we also discussed the
crossovers off andt at low temperature.
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