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By analyzing the experimental data for various glass-forming liquids and polymers, we find that the
nonexponentiality,â, and the relaxation time,τ, are commonly related: log(τ) is an approximately linear
function of 1/â, followed in most cases by a crossover to a higher linear slope. We rationalize this relationship
in the recently developed elastic approach to the glass transition. The key to the observed common relationship
betweenâ andτ is that the two quantities are governed by the same parameter, the liquid elasticity length,
del. The increase ofdel on lowering temperature increasesτ and decreasesâ, resulting in the observed common
relationship betweenâ andτ. In this picture, we also discuss the crossovers ofâ andτ at low temperature.

Introduction

Cooling a liquid to obtain a glass may seem a familiar and
conceptually simple process, yet its theoretical description
remains elusive. Such a description, as widely perceived, should
provide a consistent theory for the two main properties that a
liquid acquires in the glass transformation range: nonexponential
relaxation and super-Arrhenius temperature dependence of
relaxation time.1

At high temperature, a liquid under external perturbation
relaxes exponentially fast: a relaxing quantityq(t) decays as
exp(-(t/τ)), whereτ is associated with the transition over a
single activation barrier. This is known as Debye relaxation.
On lowering the temperature, relaxation changes markedly, and
is described by a stretched-exponential function,q(t) ∝ exp(-
(t/τ)â), where 0< â e 1.1,2 The transition from Debye relaxation
to stretched-exponential relaxation (SER) marks the onset of
the glass transformation range. The transformation is complete
when, by convention, the relaxation time,τ, increases to the
experimental time scale of 100-1000 s, corresponding to the
glass transition temperature,Tg. In the glass transformation
range, τ often increases faster than Arrhenius, and is well
approximated by the Vogel-Fulcher-Tammann (VFT) law,τ
) τ0 exp(A/(T - T0)).1

â and τ are therefore two fundamental parameters that
describe a liquid in the glass transformation range. A challenge
for a theory of the glass transition is to propose a description
of these parameters.â andτ have been discussed in a number
of popular theoretical approaches.1-6 A notable feature of these
approaches is thatâ andτ are often treated separately. One group
of theories has offered the mechanism for the increase ofτ,
and includes the Adam-Gibbs entropy theory,3 free volume
theory,4 elastic models, and other approaches (for a recent
review, see ref 1). Another group of theories has derivedâ for
SER (see, e.g., refs 2, 5, and 6).

In view of this, it remains unclear what the relationship
betweenâ andτ is, or if one exists at all. On the other hand,

because the increase of nonexponentiality and relaxation time
are the two signatures of glass transformation, it is natural to
ask if there exists a fundamental process of slowing down of
molecular motion that affects both quantities. If a single
mechanism affects bothâ andτ, it should be reflected in a well-
defined relationship between these parameters at different
temperatures in the glass transformation range.

In this paper, we show that a common relationship between
â andτ exists for all temperatures in the glass transformation
range: log(τ) is an approximately linear function of 1/â,
followed by a crossover to a higher linear slope. We discuss
the observed behavior in the elastic picture of the glass
transition. In this picture, the key to the observed common
relationship betweenâ and τ is that the two quantities are
governed by the same parameter, the liquid elasticity length,
del. The increase ofdel on lowering the temperature increasesτ
and decreasesâ, resulting in the observed common relationship
betweenâ andτ. In this approach, we also discuss the crossovers
of â andτ at low temperature.

Experimental Results for the Relationship betweenâ and
τ

We have analyzed the experimental data on dielectric
relaxation, including our recent results, as well as earlier
data.7-23 At each temperature,â andτ were determined from
the location and width of the dielectric loss peak, respectively.
Prompted by our recent work on the glass transition,24-26 we
have plotted log(τ) as a function of 1/â. In Figure 1, this
dependence is shown for 15 different glass-forming systems.

Figure 1 immediately highlights our central point, namely,
that a common relationship,f (â,τ) ) 0, can be identified for
the studied systems in the entire range of glass transformation.
First, at high temperature, log(τ) is approximately proportional
to 1/â. Second, as the temperature is reduced, a crossover to
another higher slope takes place.

Generally, presenting the data as in Figure 1 is attractive,
since it does not require scaling byTg, an arbitrary quantity
from a theoretical point of view. In addition to providing a
universal relationship betweenâ andτ, the plot in Figure 1 can
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serve as a convenient comparative representation of nonexpo-
nentiality in different systems approaching their glass transition.

We note that the pattern in Figure 1 is extended to the domain
of high pressure. In the dielectric spectroscopy experiment, the
increase ofτ at higher pressure can be counterbalanced by an
increase of temperature. For many systems, it has been shown27

that different combinations of pressure and temperature that keep
τ constant always give the same value ofâ. This signifies the
universality of the relationship betweenâ andτ.

We also note that for the present materials there is a
breakdown of the general correlation found betweenâ at Tg

and the derivative of log(τ) with respect toTg/T atTg, fragility.28

However, this correlation is known to be only approximate, with
various exceptions having been reported.29,30

There is no a priori reason why the location of the dielectric
loss peak,τ, should be correlated with its width,â. Hence, the
observed common relationship betweenâ andτ in many glass-
forming liquids, as shown in Figure 1, is unexpected and
striking. Its existence strongly suggests that SER and the VFT
law reflect the same slowing-down mechanism operative in the
glass transformation range.

Figure 1 presents a challenge for a theory of the glass
transition. First, a theory should identify the slowing-down
mechanism in a liquid that gives both SER and the VFT law.
The origin of the observed common relationship betweenâ and
τ can then be sought in the dependence ofâ and τ on some

parameter that describes the slowing-down mechanism. Finally,
a theory should explain the crossover to a higher slope, clearly
observed in Figure 1.

In order to rationalize the observed behavior, one requires
an approach to the glass transition that offers descriptions of
both â and τ. Some of these have been proposed (see, for
example, the trapping diffusion model in ref 31). In this paper,
we discuss the observed relationship based on the recently
developed approach, which considers how a stress relaxation
mechanism of a liquid changes on lowering the temperature.24-26

Relationship betweenâ and τ in the Elastic Theory of
Glass Transition

Glass transition is one of the most controversial problems in
condensed matter physics.1,32Many theories have been proposed
to explain the universal anomalous properties of liquids in the
glass transformation range. Only a small proportion of them
discussed the elastic response of a liquid, whereas others
proposed different parameters that control the glass transition,
including volume, entropy, energy, and many others.1,32Because
a glass is different from a liquid by virtue of its ability to support
shear stress, we consider that stress relaxation is the central
physical property as far as the glass transition is concerned.
However, no theory has been able to explain the glass transition
solely on the basis of stress relaxation or elasticity of a liquid.
Recently, we have proposed how to do that. We have addressed
the glass transition problem by discussing elastic fields in a
liquid and considering how the stress relaxation mechanism
changes on lowering the temperature.24-26 Below, we review
this approach and extend it in order to understand the observed
relationship betweenâ andτ.

Liquid Elasticity Length and the Origin of Slow
Relaxation

Relaxation and flow in a liquid proceed by elementary
localized structural rearrangements, during which atoms jump
out of their cages. We call these rearrangements local relaxation
events (LREs). Because the divergence of the elastic field due
to a LRE is zero, it can be viewed, in a simple model, as a pure
shear event.1 For this reason, we discuss the dynamics of shear
LREs. A structural rearrangement that accompanies a LRE
produces elastic shear stress which can propagate through the
system. The important question is how does this stress affect
relaxation of other LREs in the system?

Lets consider how the stresses created by remote LREs
propagate to a given local relaxing region in the center.
Relaxation of the central event involves deformation of the
“cage” around the jumping atom, and therefore depends on the
stresses that propagate from the remote LREs to the center. A
remote shear LRE creates the elastic shear waves which include
waves of high frequency. This is because the deformation,
associated with a localized atomic jump, creates a wave with a
length comparable to interatomic separations, and hence with a
frequency on the order of the Debye frequency. At highω >
1/τ frequency, a liquid supports propagating shear waves, which
propagate stress and its variations from remote LREs to the
central point. Ifτ is generally defined as the time of decay of
shear stress in a liquid,33 del ) cτ gives the length of this decay,
wherec is the speed of sound. Here,del gives an estimation of
the maximal range over which shear stress decays in a liquid.
At the microscopic level, the relevance ofdel ) cτ is as follows.
A high-frequency shear wave from a LRE propagates stress until
a remote LRE takes place at the front of the wave, at which
point the wave front is absorbed by the remote LRE. Suppose

Figure 1. log(τ) vs 1/â for 15 glass-forming systems. Upper panel:
molecular liquids (9, o-terphenyl;7 b, salol;8 2, PDE;8 f, 4-tertbutyl
pyridine;9 1, 54% chlorinated biphenyl;10 (, propylene carbonate;8 left-
pointing triangle, dibutylphthalate;11 0, KDE;12 O, BMMPC;12 4, 62%
chlorinate biphenyl;13 3, diisobutylphthalate14). Lower panel: 2,
polyvinylacetate;12 b, polycyclohexylmethacrylate;15 9, polyvinyleth-
ylene;16 1, bromopentane.17 Lines are guides for the eye. These
represent the materials for which data are available covering a broad
range and exhibiting “normal” behavior (i.e.,â decreases with decreas-
ing temperature). There are some glass-formers (e.g., NMEC,18 MTHF,19

1,4-polyisoprene,20 polymethylphensiloxane,21 1-propanol,8 and etha-
nol8) for which â is almost constant over the supercooled regime, and
correspondingly there is a weak or absent crossover. In other materials,
a neighboring dispersion, such as the normal mode (e.g., polyoxybu-
tylene22) or a secondary peak (BMPC12), obfuscates accurate analysis
of the R-process. For propylene glycol and glycerol,11 log(τ) changes
with â but does not show the linear behavior as in this figure.
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this happens at distancedel from the original LRE.del can be
calculated from the condition of equality of the travel time,del/
c, and the time at which the remote LRE takes place at point
del. This latter time is given byτ, becauseτ is microscopically
defined as the average time between two consecutive LREs,
and we obtaindel ) cτ as before.

del, therefore, defines the maximal distance over which the
central LRE is affected by elastic stresses due to other LREs in
a liquid. For this reason,del can be called theliquid elasticity
length. Note that because it takes timeτ for the central event to
relax, its relaxation is affected by all stresses that have enough
time to propagate to the center, i.e., those located distancecτ
away (after timeτ, the central event relaxes, and the process
repeats). In this sense, the definitiondel ) cτ is self-consistent.

To discuss howdel governs relaxation in more detail, lets
consider the dynamics of LREs in a liquid perturbed by an
external field. Some time ago, Orowan’s introduced the terms
“concordant” and “discordant” events:34 a concordant local
rearrangement is accompanied by a strain in the direction
agreeing with the applied external stress, and reduces the energy
and local stress. A discordant rearrangement, on the other hand,
increases the energy and local stress. This has led to a general
result that stress relaxation by earlier concordant events leads
to the increase of stress on later relaxing regions in a system.
Goldstein applied the same argument to a viscous liquid:35

consider a system under external stress which is counterbalanced
by stresses supported by local regions. After a concordant LRE,
a local region supports less stress after the event than before;
therefore, other local regions in the system should support more
stress after that event than before.35

Let ∆p be the increase of shear stress on a current LRE due
to previous concordant LREs. Ifn is the current number of
LREs, ∆p is a monotonically increasing function ofn. The
increase of stress on a currently relaxing region increases its
activation barrier,V. It has been argued thatV is given by the
elastic shear energy of a surrounding liquid.36 This result was
confirmed by the experimental data, showing that the activation
barrier increases with the shear energy.36 Because, as discussed
by Orowan and Goldstein, previous LREs reduce stress in the
direction “concordant” to the external stress, the increase of
shear stress on later rearranging regions consistently increases
the shear strain on them in the same direction, increasing the
shear energy and thereforeV. The increase ofV, ∆V, due to
the additional stress,∆p, is the work,∫∆p dq. If qa is the
characteristic volume,36 ∆V ) ∆pqa, and we findV ) V0 +
qa∆p, where V0 is the high-temperature activation barrier.
Because∆p is a monotonically increasing function ofn andV
) V0 + qa∆p, we find thatV is also a monotonically increasing
function ofn. This provides theelastic feed-forward interaction
mechanismbetween LREs.24

To quantify this discussion further, we consider relaxation,
induced in a liquid by a pulse of an external field. At time zero,
stresses supported by local regions counterbalance macroscopic
stress. As relaxation proceeds, each LRE reduces stress locally
until the macroscopic stress is relaxed by a certain finite number
of LREs and the liquid comes to equilibrium. At times smaller
than L/c, whereL is the system size, external stress can be
considered constant, and the stress redistribution argument of
Orowan-Goldstein applies. Alternatively, we can consider an
external field constantly compensating for the decreases of local
stresses. In the resulting steady flow,τ is a relaxation time due
to an increment of external perturbation, and can be viewed as
the time of the liquid’s retardation behind an external field. Lets
introduce time-dependent variablen(t), the current number of

relaxing events induced by an increment of external stress in
the sphere of radiusdel. n(t) starts from zero and increases to
its final valuenr. Lets consider the current LRE to relax to be
in the center of the sphere of radiusdel. As discussed above, all
previous remote concordant LREs within distancedel from the
center participate in the elastic feed-forward interaction, increas-
ing stress∆p on the central region and hence increasingV for
the central LRE. Note that all stresses within a distance ofdel

) cτ have enough time to propagate to the center and affect
the relaxation of the central event (recall the self-consistency
in the definition ofdel).

∆p can be calculated by integrating the contributions of
remote concordant LREs. This, together withV(n) ) V0 + qa∆p
from above, gives24

whered0 is on the order of the size of a relaxing region,Fr is
the density ofnr local relaxing regions, and∆p0 is the decrease
of stress due to a remote concordant LRE.

In eq 1,V depends on temperature throughdel. It is easy to
show that usingdel ) cτ andτ ) τ0 exp(V/kT) in eq 1 gives the
VFT law for V and τ.26 In this picture,the super-Arrhenius
behaVior is related to the increase of del on lowering the
temperature: as the temperature is lowered andτ increases,
more LREs are involved in the elastic interaction with a given
LRE, increasing its activation barrier.

Relationship betweenâ and τ

We are now set to write the equation that relatesâ and τ.
The rate of LREs, dn/dt, is the product of the number of
unrelaxed events, (nr - n), and the event probability,F )
exp(V/kT). SinceV depends onn (see eq 1),F depends onn as
well. Introducingq ) n/nr and reduced timet/τ0, we write

Equation 2 has two parameters,V0/kT and R ) V1/kT. We
have recently shown24 that its solution is well approximated by
the two-parameter SER,q(t) ) 1 - exp(-(t/τ)â). We note that,
whereasτ depends on bothV0/kT andR, â depends onR only;
the smallerR, the largerâ (R ) 0 gives exponential relaxation,
â ) 1).

To find the relationship betweenâ andτ, we solve eq 2 for
different values ofR, fit the solution to the form of SER above,
and find that 1/â ) 1 + CR, whereC is a constant (see Figure
2). Joining this result withV1 ∝ ln(del) ∝ ln(τ) (see eq 1), we
find that ln(τ) is a quasi-linear function of 1/â.

Figure 2. 1/â as a function ofR, obtained from the solution of eq 2.

V(n) ) V0 + V1
n
nr

(1)

V1 ) π/2Frqa∆p0d0
3 ln(2del/d0)

dq
dt

) (1 - q) exp(-
V0 + V1q

kT ) (2)
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In this picture, the key to the common relationship between
â and τ is that the two quantities are governed by the same
parameter,del. As we have seen above, the increase ofdel on
lowering the temperature decreasesâ because it increasesV1

(see eqs 1 and 2), and at the same time, it increasesτ because
the total activation barrier increases (see eq 1). This gives the
universal relationship betweenâ and τ, consistent with that
observed in the experiment.

To discuss the crossover to the second higher slope in Figure
1, we note that our theory predicts the crossovers24-26 of both
τ andâ at del ) L, whereL is the system size. Recall thatV ∝
ln(del) (see eq 1). As long asdel < L, V increases with
temperature, becausedel increases. Whendel g L, the system
crosses over from being partially to wholly elastic, andV
becomes temperature-independent,V ∝ ln(L) (see eq 1). When
del g L, further decrease of temperature has a weaker effect on
V related to, e.g., a density increase, but not to the increase of
del. Therefore, this picture predicts the dynamic crossover, at
which the VFT dependence changes to either Arrhenius form
or another VFT dependence with smaller curvature. This is
consistent with experimental results.8

The same reasoning applies to the crossover ofâ. V1 increases
on lowering the temperature becauseV1 ∝ ln(del) in eq 1. This
remains true as long as, on lowering the temperature,del < L.
When del g L, V1 ∝ ln(L) and is temperature-independent.
Hence, atdel ) L, V1 shows a kink. Consequently, becauseâ
decreases withV1/kT (see Figure 2), we find thatdel ) L should
mark the crossover ofâ to a lower slope. Taking salol as an
example, we observe the well-defined kink at low temperature
and the crossover to the lower slope (see Figure 3), consistent
with the theory.

Consistent with this picture, we find that the crossovers in
Figure 1 correspond to temperatures at which bothτ andâ show
a crossover. At the crossover temperature, we find thatτ crosses
over from one VFT dependence to another. Therefore, each
linear behavior in Figure 1 can be assigned to a single VFT
dependence. At about the same temperature,â shows a crossover
as well. For example, for salol, the kink ofâ takes place at
about 1/â ) 1.5 (see Figure 3), the same value at which the
crossover in Figure 1 is seen.

We also find that the crossover ofτ is less pronounced as
compared with that ofâ. As a result, the detection of the
crossover of τ requires derivative analysis,8 whereas the
crossover ofâ is readily seen in Figure 3. The reason for this
is explained in our theory as follows.V andτ are defined by
the sum of a constant termV0 and a temperature-dependent term
V1 (see eq 1), whereasâ is solely defined byR ) V1/kT (see eq
2). Hence,â is more sensitive to the crossover atdel ) L as
compared toτ. As a result, the crossovers seen in Figure 1 are
due, to a large extent, to the crossover ofâ: for salol, the

pronounced crossover to the lower slope in Figure 3 gives the
crossover to the higher slope in Figure 1.

Therefore, we find that the predictions from our theoretical
approach are consistent with the crossovers seen in Figure 1.
To quantify this discussion further, we make two observations.
First, from the definition ofdel, the relaxation time at the
crossover isτ ) L/c. If a typical experimental value ofL is
taken in the range of, for example, 1-10 mm, and ofc as 1000
m/s,τ at the crossover is 10-6-10-5 s. This is in a reasonable
agreement with the crossovers seen in Figure 1, at whichτ is
in the 10-6-10-4 s range. Second, we can evaluate the crossover
temperature as follows. Multiplyingτ ) τ0 exp(A/(T - T0)) by
c, we find del ) a exp(A/(T - T0)). Here, τ0 is the Debye
oscillation period,a is an interatomic separation of about 1 Å,
and we have taken into account thata ≈ cτ0. Take, for example,
salol, for whichA ) 839 K andT0 ) 195 K.23 Using del ) L
at the crossover andL in the 1-10 mm range as above, we
find the crossover temperature,TL, in the range 241-247 K.
This agrees reasonably well with the crossover temperature seen
in Figure 3, as well as with the crossover temperature ofτ.23

We note that, for some liquids, the conditiondel g L can
hold true even at high temperature.26 In this case, no crossover
is observed on lowering the temperature, consistent with some
of our experimental results. However, our picture predicts that
the dynamic crossover atdel ) L would be observed in these
liquids if the measurements were extended to higher temperature.
This temperature should be high enough so thatdel reduces
belowL in order to observe the crossover at lower temperature.
We also note that the increase ofV on lowering the temperature
can have a contribution related to the increase of density. This
contribution comes in addition to the increase ofdel and does
not depend ondel or L. Hence, the crossover atdel ) L can be
reduced depending on the relative weight of the contributions
that arise from the increase ofdel and density.

By comparing theoretical and experimental results, we have
found that the insights from our theory offer a consistent way
to understand and interpret the experimental data in Figure 1,
including the crossovers. At the same time, we note that our
theory also predicts that, at low temperature whendel g L,
viscosity can weakly depend on the size of a macroscopic system
(with the caveats discussed above). Whereas system size effects
were observed in nanoconfinement and thin films, no such
dependence has been reported for a macroscopic system, except
in our recent experiment.25 It is interesting to study this effect
in other systems and in more detail. We hope that our discussion
can stimulate further experimental work.

Summary

In summary, we have shown that the nonexponentiality
parameter,â, and relaxation time,τ, are commonly related in
the glass transformation range: log(τ) is an approximately linear
function of 1/â, followed in some cases by a crossover to a
higher linear slope. We rationalized this relationship using the
elastic theory of the glass transition. In this picture, the key to
the common observed relationship betweenâ andτ is that the
two quantities are governed by the same parameter, the liquid
elasticity length,del. The increase ofdel on lowering the
temperature increasesτ and decreasesâ, resulting in the
observed relationship. In this approach, we also discussed the
crossovers ofâ andτ at low temperature.
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Figure 3. Temperature dependence of 1/â in salol.7,8 TL is the
temperature of the crossover whendel ) L.
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