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Abstract
The dynamics of isooctylcyanobiphenyl (8*OCB) was characterized using dielectric and
mechanical spectroscopies. This isomer of the liquid crystalline octylcyanobiphenyl (8OCB)
vitrifies during cooling or on application of pressure, exhibiting the typical features of
glass-forming liquids: non-Debye relaxation function, non-Arrhenius temperature dependence
of the relaxation times, τα , a dynamic crossover at T ∼ 1.6Tg. This crossover is evidenced by
changes in the behavior of both the peak shape and the temperature dependence of τα . The
primary relaxation time at the crossover, 2 ns at ambient pressure, is the smallest value reported
to date for any molecular liquid or polymer. Interestingly, at all temperatures below this
crossover, τα and the dc conductivity remain coupled (i.e., conform to the
Debye–Stokes–Einstein relation). Two secondary relaxations are observed in the glassy state,
one of which is identified as the Johari–Goldstein process. Unlike the case for 8OCB, no liquid
crystalline phase could be attained for 8*OCB, demonstrating that relatively small differences
in chemical structure can effect substantial changes in the intermolecular potential.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Glass is omnipresent, with glassy materials employed
for diverse purposes from window glass to engineering
thermoplastics. Although glasses have solidlike properties,
their microscopic structure is characteristic of the liquid state.
Accordingly, much effort has been expended to understand
the physics of vitrifying liquids; however, no first-principles
theory of supercooled liquids exists. One of the most useful
methods for studying the dynamics of supercooled liquids is
dielectric spectroscopy (DS), primarily because of its wide
frequency range, covering 14 or more decades [1]. Many
studies have shown that the temperature dependence of the
primary (structural) α-relaxation time, τα, is stronger than
Arrhenius [2] and described by the empirical Vogel–Fulcher–
Tamman (VFT) relation [3]

τα = τ0 exp

(
DT T0

T − T0

)
(1)

3 Author to whom any correspondence should be addressed.

where τ0, DT , and T0 are material constants. The degree of
departure from Arrhenius behavior varies among liquids and
a convenient measure of this departure is the Tg-normalized
slope at Tg

m = d log τα

d(Tg/T )

∣∣∣∣
Tg

, (2)

referred to as the fragility or steepness index [4].
Although commonly applied, the VFT equation is able

to describe the τα only over a limited temperature range.
Above a ‘crossover temperature’, TB , the relaxation dynamics
change, with new set of VFT parameters required to describe
τα(T ). This ‘dynamic crossover’ is especially evident in
derivative plots [5]. The characteristic value, τB = τα(TB),
varies by more than four orders of magnitude among different
liquids; for example, τB = 4 × 10−4 s for phenolphthalein–
dimethylether (PDE) and τB = 4 × 10−8 s for propylene
carbonate [6]. However, for a given material τB is constant,
independent of pressure and volume [7–9].

The dispersion of the α-relaxation of supercooled glass
formers is invariably wider than for a Debye process [10]. The
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broadened shape of the loss spectrum reflects the interactions
with molecules in the vicinity of a given relaxing species; such
cooperativity of the dynamics is intrinsic to condensed matter.
The one side Fourier transforms of the Kohlrausch–Williams–
Watts (KWW) function [11, 12]:

φ(t) = exp[−(t/τ)βKWW], 0 < βKWW � 1 (3)

is often used to describe this non-Debye behavior. Böhmer
et al [13] found an empirical connection between the shape of
the primary relaxation as described by the stretch exponent,
βKWW, and the fragility

m = (250 ± 30) − 320βKWW. (4)

Another near universal feature of supercooled liquids is
the presence of one or more secondary relaxations, preceding
in time the α-process. The molecular mechanisms underlying
secondary relaxations are different for different materials.
Some have an intramolecular origin, such as rotation of
pendant groups [14]. However, other secondary relaxations,
present even in rigid molecules, involve all atoms in the
molecule [15] and are known as a Johari–Goldstein (JG)
process [16, 17]. Certain criteria can be applied to define
a JG process and thereby distinguish it from intramolecular
secondary relaxations [18]. One important main criterion is
that the dynamic properties of the JG relaxation are correlated
with those of the primary α-relaxation. Theoretical support for
this correlation comes from the coupling model of Ngai [19].
According to the coupling model, there is a primitive relaxation
process that has characteristics of the JG relaxation, in
particular being unaffected by intermolecular coupling. The
primitive relaxation time, τ0, and the JG relaxation time, τJG,
are expected to be comparable in magnitude

τ0 ≈ τJG. (5)

According to this model,

τ0 = (tc)1−β(τα)β (6)

where the crossover time tc = 2 × 10−12 s. Thus, equations (5)
and (6) connect the values of the α- and the JG relaxation times.
In the vicinity of TB the JG process merges with the structural
relaxation, so that secondary relaxations are usually measured
below Tg, where τJG(T ) follows an Arrhenius law [20].

In addition to structural and secondary relaxations, DS
experiments detect at lower frequencies a dc conductivity, σ ,
originating from translation of mobile ions. τα and σ are often
related according to the Debye–Stokes–Einstein (DSE) relation

στα = const (7)

expressing a correlation between translational and rotational
motions of different entities. However, in the supercooled
regime there usually is a decoupling of σ and τα , described
by a fractional DSE relation (FDSE):

στ s
α = const (8)

where s is less than unity [21]. The change from DSE behavior
at higher temperatures to FDSE at lower temperatures occurs
at the dynamic crossover [14].

While these general features are characteristics of glass-
forming liquids, how specific changes in chemical structure
influence the dynamic properties is poorly understood.
The degree to which the molecular structure engenders
intermolecularly cooperative motion correlates well with the
magnitude of both βKWW and m [22]. However, detailed
aspects of the dynamics are not obviously connected to
structure. For example, the class of phthalate derivatives
have very similar properties [23], whereas PDE and the
structurally similar crephthalein–dimethylether have distinctly
different behaviors [24]. Liquid crystalline materials also
show pronounced changes in relaxation dynamics for modest
changes in molecular structure [25]. Systematic studies of the
effect of chemical structure on relaxation properties are clearly
of great value.

In this paper, dielectric relaxation measurements on
isooctylcyanobiphenyl (8*OCB) are presented. This material
is an isomer of the liquid crystalline octylcyanobiphenyl
(8OCB) but does not exhibit any liquid crystal formation.
8*OCB shows most of the characteristic features of glass-
forming liquids described above, with a few exceptions noted
herein. This study was extended to include mechanical
measurements, to gain a more complete picture of the
dynamics.

2. Experimental details

The compound (8*OCB) was prepared in the Military
University of Technology, Warsaw by Czuprynski and
Dabrowski and used without further purification. DS
measurements were performed using the Novocontrol Concept
80 equipped with Alpha and Agilent 4291B impedance
analyzers. We measured the complex permittivity ε∗(ω) =
ε′(ω)− iε′′(ω) over the frequency range from 1 mHz to 1 GHz.
The sample was in parallel plate cell (diameter = 20 mm and
thickness = 0.1 mm), sealed to isolate it from the silicon oil
used as a pressurizing fluid. The sample chamber was enclosed
with a jacket through which thermostated (Julabo HD 45S)
fluid was circulated; in combination with a cryosystem, ±0.1 K
temperature stability was achieved. Pressure measurements
used a Unipress chamber with a Nova Swiss generator and
Nova Swiss tensometric meter (resolution = ±0.1 MPa).

Dynamic mechanical measurements were performed
using a Bohlin VOR rheometer with a parallel plate geometry.
The sample diameter were varied in the range from 6 to 25 mm
in accordance with material stiffness (thickness = 0.8 mm).
Dynamic shear experiments were carried out over the range
from 10−4 to 1 Hz at temperatures in the supercooled regime.

3. Results and discussion

3.1. α process and DC conductivity

Representative isothermal dielectric relaxation spectra mea-
sured at ambient pressure are shown in figure 1. In addition
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Figure 1. Temperature dependence of dielectric loss at ambient pressure above and below Tg. Inset: selected spectra of the γ process deep in
the glass state.

Figure 2. Arrhenius plot of primary and secondary relaxation times. Solid curves represent the VFT fit of τα and Arrhenius fit of the
secondary relaxation times. Also included are the mechanical relaxations times (solid squares) shifted by a factor of 32 to overlap the
dielectric τα . Empty triangles are τ0, calculated from equation (6). In the inset are τα (solid squares) and the dc conductivity (open circles),
notice that the scale span is the same for both (about 12 decades).

to the primary α-relaxation, a dc conductivity contribution is
seen at lower frequencies. Also in the vicinity of and below
Tg, higher frequency secondary relaxations are observed. The
dielectric loss spectra were fit to a superposition of two
Havriliak–Negami (HN) functions with added conductivity
contribution:

ε′′(ω) = σDC

ε0ω
+ Im

2∑
i=1

(

ε

[1 + (iωτHN)αHN ]βHN

)
. (9)

In equation (9) αHN and βHN are the respective shape
parameters, characterizing the symmetric and asymmetric

broadening of the peak, 
ε is the process strength and σDC

is the DC conductivity. Relaxation times were determined as
the reciprocal of the frequency of the maximum in ε′′(ω), the
latter obtained from the HN fits. Figure 2 displays an Arrhenius
plot of the relaxation times versus reciprocal temperatures.
The curvature of the plots is significant, corresponding to a
fragility (using Tg = 221 K for which τα = 100 s) equal to
86. Two sets of VFT parameters are required to fit τα over all
measured temperatures: for 224 K < T < 348 K, log(τ0/s) =
−11.49 ± 0.01, D0 = 5.79 ± 0.01, and T0 = 186.3 ±
0.1 K; for 358 < T < 413, log(τ0/s) = −10.62 ± 0.02,
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Figure 3. Stickel derivative plot of the α-relaxation and dc
conductivity data from figure 2.

Figure 4. Stretch exponent for the α-relaxation as a function of
temperature. The dotted lines denote the temperature of the dynamic
crossover determined from τα(T ).

D0 = 2.18 ± 0.09, and T0 = 238.4 ± 2.2 K. From the Stickel
derivative plot in figure 3, we determine TB = 351.8 K and
τB = 2.3×10−9 s at ambient pressure. This is an unusually low
value, smaller than reported to date for any molecular liquid or
polymeric glass-forming material [6, 26].

In figure 4 the stretch exponent is plotted as a function
of temperature. The deviation from Debye behavior is weak.
In the vicinity of Tg there is a change in the temperature
dependence of βKWW. The continued broadening of the peak
with decreasing temperature above TB ceases, with a constant
value of βKWW = 0.9 assumed for lower temperatures.
This is similar to the behavior observed for other vitrifying
materials [27, 28].

While the temperature dependencies of τα and βKWW

both evidence the existence of a dynamic crossover, the
usual decoupling between the dc conductivity and the α-
relaxation is absent (inset to figure 2). The data conform to

Figure 5. Representative loss spectra measured at different pressures
and T = 268 K.

Figure 6. Pressure dependence of τα at different temperatures. Solid
lines are the fits to the equation (10).

the DSE relation (equation (7)) throughout the temperature
regime below the dynamic crossover (note that the crossover
temperature, 351.8 K, is much higher temperature than the
highest temperature at which the conductivity was measured).

In figure 5 representative dielectric loss spectra measured
at various pressures and 268 K are displayed. Qualitatively,
the effect of increasing hydrostatic pressure is similar to that of
decreasing the temperature. The pressure dependence of τα for
three isotherms at 251, 268 and 287 K are depicted in figure 6.
These relaxation times can be fitted with an equation analogous
to the VFT relation [29, 30]

τ = τa exp

(
DP P

P0 − P

)
, (10)

where τa denotes the corresponding relaxation time at ambient
pressure, and P0 and DP are material constants. The resulting
fits are shown as lines in the figure.
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Figure 7. Pressure dependence of the activation volume.

Figure 8. Pressure dependence of the glass transition temperature.

A useful parameter to characterize the pressure depen-
dence of τα is the activation volume, defined as


V # = RT

log(e)

(
d log τ

dP

)∣∣∣∣
T
. (11)

Having the units of volume, 
V # is often interpreted as the
volume requirement for a change in molecular orientation [31].
The variation with pressure of 
V # for T = 268 and 287 K
are shown in figure 7; the increase in activation volume
with increasing pressure is normal behavior. Similarly 
V #

increases with decreasing temperature. Both effects reflect the
increasing cooperative nature of the dynamics at higher P or
lower T [32]. The glass transition temperature varied linearly
with pressure, dTg/dP ∼ 0.13 K MPa−1 (figure 8), a low value
for a non-associated liquid [33].

Relaxation measurements at different combinations of
temperature and pressure enable a comparison of the shape of
the loss spectra at constant τα. Figure 9 is an example of such

Figure 9. Comparison of dielectric loss measured at different
conditions corresponding to constant τα . Solid curve is fit to KWW
equation.

Figure 10. HN shape parameters for α-relaxation for various
conditions of T and P, showing the invariance of the peak for
constant τα .

a comparison, wherein the two peaks are seen to superpose.
Such behavior conforms to the general pattern that at constant
τα, the shape of the α-relaxation function is constant; that is,
βKWW is determined solely by the magnitude of the structural
relaxation time [34, 35]. This is true herein for all pressures and
temperatures, as shown in figure 10 in the plot as function of
τα of the HN shape parameters for the isobaric and isothermal
data. Generally the α-relaxation peak becomes broader with
increasing τα; however, this breadth is constant for any fixed
value of τα.

As was mentioned above many materials conform at least
approximately to the empirical correlation between fragility
and βKWW described by equation (4). However, 8*OCB clearly
deviates from this pattern: m estimated from equation (4) is
32 ± 30, much smaller that the measured value of 86.
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Figure 11. Top panel: master curves of the storage and loss mechanical moduli. Bottom panel: corresponding master curves of the dielectric
in-phase and out-of-phase moduli.

3.2. Secondary relaxation

Like most supercooled liquids, 8*OCB undergoes secondary
relaxations, as seen in figure 1. In the vicinity of Tg a slower
β process emerges from the wing of the α-peak, whereas
a faster γ process is only observed at temperatures well
below Tg (see inset). The symmetric Cole–Cole function
describes both secondary peaks, and as shown in figure 2
below Tg the relaxation times for both have an Arrhenius
temperature dependence, with activation energies equal to
56.6 ± 1.1 kJ mol−1 for the slower γ process and 24.5 ±
0.2 kJ mol−1 for the higher frequency one. Above Tg the β

relaxation exhibits a change in its temperature dependence, as
is commonly observed [20, 36, 37].

To identify the molecular origin of the two secondary
processes in 8*OCB we apply equations (5) and (6). The
calculated secondary relaxation times are shown as open
triangles in figure 2. The primitive relaxation times from the
coupling model are in reasonable agreement with the values
for the slower secondary process, whereby we identify it as the
intermolecular Johari–Goldstein relaxation. The γ relaxation,

on the other hand, must involve only some atoms in the 8*OCB
molecule. It is noteworthy that the temperature of the merging
of the α- and β-relaxations, obtained by extrapolation of the
Arrhenius regime, is 258.7 K, which is almost one hundred
degrees lower than TB . This reflects the error in extrapolated
the Arrhenius temperature dependence of the glassy state to
above Tg. Extrapolation of the γ process never superimposes
with the α-relaxation, since the two are unrelated.

3.3. Mechanical relaxation

From the mechanical measurements at various temperatures,
master curves of the storage (G ′) and loss (G ′′) shear
moduli were constructed (figure 11). Notwithstanding the
clear breakdown of time–temperature superpositioning (the
mechanical loss peak changes shape with changes in T ), the
breadth of the peak is approximately equivalent to the dielectric
loss α-peak. The relaxation strengths, however, are quite
different.

The mechanical relaxation times determined from the
inverse frequency of the peak in G ′′ are included in figure 1

6
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after multiplying by a factor 32. The latter brings them into
coincidence with the dielectric τα . Invariably mechanical
relaxation times are shorter than the corresponding dielectric
τα [38, 39]. Buchenau et al [40] have ascribed this difference
to the possibility that dielectric relaxation involves not only
molecular orientation but also the shorter range order and the
density. This is an intriguing area for further study.

4. Conclusions

The relaxation dynamics of isooctylcyanobiphenyl was studied
by dielectric and mechanical spectroscopies, using both
temperature and pressure as experimental variables. In contrast
to the related octylcyanobiphenyl, 8*OCB does not form
a liquid crystalline phase, but does exhibit features typical
of glass-forming liquids, such as non-Arrhenius and non-
Debye behaviors, a dynamic crossover above Tg, and the
existence of multiple secondary processes having intra- and
intermolecular origins. However, the α-relaxation time at
the dynamic crossover is shorter for 8*OCB than observed
heretofore for other supercooled liquids. Also, 8*OCB
strongly deviates from the empirical correlation between the
shape of the primary α-peak and the fragility. It is intriguing
that in the octylcyanobiphenyls, similarly to the properties
of pentylcyanobiphenyls [25], small changes in chemical
structure exert such a marked effect on the dynamics.
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