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A B S T R A C T

Using molecular dynamics simulations we examine the system size dependence of the fast dynamics in two
model glass forming liquids, one of them a Lennard-Jones mixture for which cooperative fast relaxation has been
reported. We find no indication of a temperature-dependent dynamic length scale characterizing these fast
dynamics; the size effects in the short time range are temperature independent and the consequence of cutting
off of long wavelength acoustic modes. In a molecular liquid exhibiting a clear Johari-Goldstein (JG) relaxation,
significant size effects are again present both for the vibrational motion and long-time α relaxation (only the
latter having a significant temperature dependence), but absent for the JG relaxation.

1. Introduction

Glass-forming liquids exhibit complex dynamics, with motions
taking place at multiple timescales. Displacements and reorientations
that alleviate perturbations are referred to as relaxations. One approach
to understanding glass formation is to characterize the relaxation be-
havior at times prior to structural (α-) relaxation, and assess any re-
lationship between the structural and fast dynamics. Studies carried out
along these lines have concluded that a connection indeed exists,
manifested ultimately in the fast dynamics “sensing” the glass transition
[1–6]. This approach requires identification of relevant secondary re-
laxations, distinct, for example, from trivial pendant group motion. Of
the various high frequency processes, the most important for under-
standing glass formation is the secondary β relaxation. It is most
commonly detected by dielectric spectroscopy, since even small fluc-
tuations in molecular orientation can yield a significant change in local
polarization. Secondary dynamics involving motion of the entire mo-
lecule are referred to as the Johari-Goldstein (JG) relaxation. Unlike
other secondary processes, the JG relaxation is found universally in
glass-forming materials, including liquids, polymers, ionic conductors,
and metallic glasses. It has properties that correlate with those of the α
relaxation [7], which leads to the idea that the JG process serves as the
precursor of the glass transition; that is, the short-time JG dynamics
evolves into structural relaxation transpiring at macroscopic times
(> 10 s) [8]. Since it is well established that the α relaxation is co-
operative, governed by dynamic heterogeneity and intermolecular
correlations that increase on cooling [9], the question arises whether
the JG regime is cooperative.

Intuitively the expectation is that going from vibrational caging at

very short timescales to the JG process (observed dielectrically in the
kHz–MHz frequency range), then ultimately to the α relaxation, will be
associated with increasing length scales; therefore, the JG dynamics
would be at most weakly cooperative. (The coupling model of Ngai [8]
makes this assumption explicitly in connecting the JG relaxation time to
the non-cooperative time constant of the model.) The JG relaxation is
dynamically heterogeneous, but dynamic heterogeneity does not imply
cooperativity [10]. Johari and Goldstein originally described the pro-
cess as involving rearrangements of “at least one, but probably several
molecules” [11]. The high activation energy and activation entropy of
the JG process in the glassy state have been interpreted as indicating
some degree of cooperativity [12]. To distinguish this from the strong
intermolecular cooperativity exhibited by the α relaxation, the β pro-
cess has been called “locally coordinative” [13]. Consistent with this
idea, it has been found that the potential barriers for the JG relaxation
overlap, although they may be somewhat lower than the barrier heights
for the α relaxation [14]. An interpretation of the JG process as re-
arrangements of string-like clusters of molecules implies cooperativity
[15], and some degree of intermolecular cooperativity is inferred from
NMR measurements of binary mixtures [16] and organic phosphate
glasses [17]. In molecular dynamics (MD) simulations of asymmetric
dumbbell-shaped molecules, a weak maximum in the dynamic sus-
ceptibility at the timescale of the JG relaxation indicates some degree of
dynamic correlation, but it is very weak compared to the correlation of
the α relaxation, and its intensity does not increase on cooling (in fact
in the glassy state dynamic correlations on the JG timescale decrease on
cooling) [18].

Recently MD simulations have been carried out focusing on the
short-time relaxation dynamics in Lennard-Jones (LJ) and other model
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systems [19]. Following Stein and Andersen [20], in these studies the β
relaxation is associated with the minimum in the derivative of the
logarithm of the mean square displacement (MSD) with respect to the
logarithm of time. A length scale is determined from finite-size scaling,
which is found to have the same temperature dependence as the length
scale describing spatial heterogeneity of the α relaxation (both in-
creasing on cooling). The interpretation of these results has been that
this β relaxation is cooperative, with likely the same origin as the α
relaxation evident at the long-time end of the MSD plateau [19]. The
systems studied previously [19] do not show an explicit signature of the
JG relaxation as an increase in the MSD or a step in the intermediate
scattering function. The process ostensibly transpiring with the MSD
plateau is not the JG relaxation, as evident from behavior quite dif-
ferent from that of the latter [8,11,13–17,19,20]. It is not obvious what
underlies this putative secondary relaxation, given the absence of dy-
namics in the MSD plateau.

In this short paper we examine in detail which features of the dy-
namics in the binary LJ system manifest as an inflection point in the
MSD. We identify two such features, distinct from each other, providing
an alternative explanation for the results in ref. [19]. In addition, we
employ MD simulations of diatomic molecules to study the secondary
dynamics. For diatomic molecules, unlike the LJ particles of ref. [19],

the orientational correlation function shows a distinct β process, man-
ifested as a peak in the frequency domain [21]. The correspondence to
experimental dielectric spectra of substances exhibiting JG dispersions
is apparent [22]. This unambiguous detection of the JG relaxation in
simulations enables observation of the features that define the JG
process in real materials, such as merging with the α peak at high
temperature, changes in the strength of the α relaxation at Tg, and
significant sensitivity to density, pressure, and physical aging [22].
These properties distinguish the JG relaxation from trivial secondary
dynamics that involve only intramolecular degrees of freedom [7,23]
and from the fast β process of mode coupling theory [24–26].

2. Methods

Simulations were carried out using the RUMD simulation software
[27]. All simulations were performed in the NVT ensemble with a Nose-
Hoover thermostat [28]. Two systems were simulated: (a) the three-
dimensional Kob-Andersen binary Lennard-Jones mixture (KABLJ)
[29], with system sizes ranging from N=100 to N=65,000 particles
at a number density ρ=1.2 and temperatures in the range T=0.1 to

Fig. 1. (left) System size dependence at T=0.45 of MSD and the derivative of log MSD with respect to log t (the latter shifted vertically for clarity), for the KABLJ
system. The MSD begins with slope= 2 (ballistic), develops a plateau, and eventually increases with slope=1 (diffusion). Triangles denote the minimum in
d log 〈Δr2〉/d log t. (right) Same data at T=0.55, higher temperature causing the plateau to terminate at shorter times. The overshoot determines the temperature of
the minimum for N < 2000, but at N > 2000 the overshoot (circles) is barely visible, with a change of slope in the derivative; the minimum falls in the middle of the
plateau.

Fig. 2. Same data as Fig. 1 at temperatures (left to right) T=1.0, 0.8, 0.6, 0.5,
0.45, 0.4, 0.3. The curves are shifted vertically for clarity. At high temperatures
(higher plateaus) the derivative minimum tmin(T), denoted by crosses, occurs at
the middle of the plateau, at a temperature-dependent time tmid(T). As tem-
perature decreases and tmin(T) becomes significantly longer than the overshoot
time to (which depends on N but is temperature independent), the minimum
occurs at to (indicated by arrows).

Fig. 3. Time of the minimum of d log 〈Δr2〉/d log t for the KABLJ system versus
linear system size (side of the cubic simulation box). Dotted symbols: minimum
at tmid; open symbols: minimum at to. The solid line is a linear fit to the tmid data,
passing through the origin. (Note that at temperatures T < 0.45 where the
system is out of equilibrium, the system size dependence of the minimum does
not change.)
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T=1.0. For temperatures above T=0.45, the system was well equi-
librated using an NVT run several times longer than the α relaxation
time. For T < 0.45, the system was equilibrated for t=500,000,
shorter than the α relaxation time; therefore, these represent an out-of-
equilibrium glass. (b) Asymmetric diatomic molecules (AD) [21], in
which each molecule is composed of two Lennard-Jones particles with
size parameters 1.0 and 0.625 connected by a rigid bond. The bond
length was maintained constant at l= 0.45 using a constraint force
algorithm [30]. System sizes from N=50 to N=5000 molecules were
simulated at temperatures from T=0.3 to T=0.6 at ρ=1.2. A cutoff
of rcut= 2.5 units was used for the Lennard-Jones interactions.

3. Results

Fig. 1 shows the system size dependence of the MSD and its deri-
vative d log 〈Δr2〉/d log t for the KABLJ system at two temperatures.
With decreasing system size, the height of the MSD plateau decreases,
with an “overshoot” developing at the beginning of the plateau. The
overshoot is a finite size effect caused by the cutting off of long-wa-
velength acoustic sound modes due to the finite size of the simulation
box [31]. More prominent in 2D than 3D simulations, the overshoot is
manifested as a “bump” in the intermediate scattering function seen in
the Kob-Andersen mixture [28], as well as other systems such as silica
[32] and OTP [33].The time of the overshoot, to, is temperature-in-
dependent and scales linearly with the length of the simulation box. A
connection of the overshoot to the Boson peak has been suggested
[31,32], and it may have the same origin as the short-time peak in the
4-point dynamic susceptibility, the time scale of which also increases
linearly with system size [19]. At T=0.45 the minimum in the deri-
vative (denoted by triangles in Fig. 1) corresponds to this overshoot,
located near the beginning of the MSD plateau. At T=0.55, the plateau
ends at shorter times, and for the larger system sizes (N > 2000) the
minimum in the derivative no longer coincides with the overshoot;
rather, the former moves towards the middle of the plateau at tmid

(> to). These observations make evident that the inflection in the MSD
and its temperature dependence are not properties of a putative

secondary relaxation; rather, they reflect unrelated, piecemeal effects,
the relative contribution of each depending on state point and MSD box
size.

Fig. 2 shows the MSD and d log 〈Δr2〉/d log t at a series of tem-
peratures for different system sizes (number of particles). At high
temperatures the derivative minimum occurs at the middle of the pla-
teau, tmid. As temperature decreases and tmid becomes significantly
longer than the overshoot time, the minimum is located at to. Thus, the
inflection in the MSD shifts from the plateau midpoint at higher tem-
peratures to the vicinity of the overshoot at lower T. These results are
collected in Fig. 3, displaying the time of the minimum versus system
size. Note that for temperatures below T=0.45, the effect of system
size on the fast dynamics is qualitatively the same, despite the fact that
at lower temperatures the system is out of equilibrium. The temperature
dependence of tmin has no specific physical interpretation, but is merely
a time intermediate between the vibrational timescale defining the
beginning of the plateau and the α relaxation time defining its end. At
lower temperatures the minimum follows t0, seguing to a constant
tmin= tmid at higher T. The parameter tmid very weakly increases with
system size, similar to the behavior for the α relaxation.

We also applied finite-size scaling to MD simulations of a diatomic
molecule (AD system) that exhibits a genuine JG relaxation (Fig. 4). In
addition to the MSD and its derivative, we show the imaginary part of
the first order rotational susceptibility as a function of angular fre-
quency

∫= +
∞

χ ω iω dte C t( ) 1 ( )iωt
0 1

where C1(t)= 〈cosθ(t)〉 is the first order rotational susceptibility, and θ
the angular change in the molecular axis. In the susceptibility plot three
peaks are observed, corresponding (from high to low frequencies) to
vibrational motions, the JG relaxation, and the α relaxation. The JG
relaxation manifests in the MSD as a broad step in the mean square
displacement within the plateau region, and a second broad minimum
in d log 〈Δr2〉/d log t. On reducing the system size, the α relaxation time
increases, opposite to the behavior of the vibrational peak. The latter
moves to higher frequency with a decreasing intensity on the low fre-
quency side of the peak. This is due to truncation of the long-wave-
length acoustic modes by the finite system size. However, the JG pro-
cess shows no change, even for a system size as small as 50molecules;
i.e., a box having dimensions less than 4molecules. (Note further re-
ducing the box size would intrude on rcut used for the LJ interactions
and thus lead to artifacts.) We observe a similar invariance to system
size for the JG dynamics at lower temperature.

4. Conclusions

In summary, the present results show that the secondary dynamics
observed in MD simulations depends on the system studied because of
the requirement to have resolved processes that fall within an acces-
sible window of time. Interpretation of the MSD inflection must account
for two disparate effects in order to yield reliable information, but it is
not obvious how the mechanism of the inflection can be connected to
an actual relaxation process. The time at which an inflection occurs in a
log-log plot of the MSD versus time does not define a physically
meaningful relaxation time, nor does analysis of the inflection yield
information about the dynamic length scale of short-time motions or
their temperature dependence. The inflection corresponds to either an
overshoot in the MSD or the midpoint of the plateau, depending on the
temperature and system size. At lower temperatures the inflection fol-
lows the overshoot caused by finite-size scaling and the consequent
cutting off of long wavelength modes. These changes in the location of
the inflection are unrelated to the length scale of any supposed β dy-
namics. On the other hand, at higher T and/or larger system size, for
which the overshoot becomes negligible, the inflection falls in the
middle of the plateau between the vibrations and the α process;

Fig. 4. System size dependence at T=0.5 of (upper) MSD and the derivative of
log MSD with respect to log t and (lower) imaginary part of the 1st order ro-
tational susceptibility, for the AD system. From high frequencies to low, three
peaks corresponding to vibrations, JG, and α relaxation are observed.
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consequently, its T-dependence trivially follows that of the α relaxa-
tion. Unlike MD simulations of LJ particles, diatomic molecules exhibit
an explicit signature of the JG relaxation. However, there is no in-
dication of a dynamic length scale revealed by finite size scaling, pre-
sumably because the smallest feasible box size (four molecular dia-
meters) is too large.
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