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Abstract

The experimental fact that relaxation times, s, of supercooled liquids and polymers are uniquely defined by the quantity TVc, where T

is temperature, V specific volume, and c a material constant, leads to a number of interpretations and predictions concerning the dynam-
ics of vitrification. Herein we examine means to determine the scaling exponent c apart from the usual superpositioning of relaxation
data. If the intermolecular potential can be approximated by an inverse power law, as implied by the TVc scaling, various equations
are derived relating c to the Grüneisen parameter and to a common expression for the pressure derivative of the glass temperature.
In addition, without assumptions, c can be obtained directly from pressure-volume-temperature data. These methods for determining
c from molecular or thermodynamic properties are useful because they enable the P- and V-dependences of s to be obtained, and thereby
various analyses of the dynamics to be explored, without the need to carry out relaxation measurements beyond ambient pressure.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

As demonstrated for more than 40 molecular and poly-
meric glass-forming materials [1–6], the local relaxation
times (structural or segmental) measured under various ther-
modynamic conditions (e.g., different temperatures and
pressures) in the equilibrium state (T > Tg(P)) superpose
when plotted as a function of temperature times the specific
volume, the latter raised to a material constant; that is,

s ¼ I1ðTV cÞ; ð1Þ
where I1 represents some unknown function, which can be
related to the excess configurational entropy [7]. Empiri-
cally, the exponent c has been found to vary in the range
0.13–8.5 [8]. This power-law scaling is capable of describing
relaxation times over the entire supercooled regime from Tg

through temperatures beyond the dynamic crossover. Other
forms for the scaling have been proposed (e.g. a linear scal-
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ing on density [9]), but these are valid only over a limited
range [2,8]. Eq. (1) is an empirical fact without underlying
assumptions. Of course, it would be useful to develop a the-
oretical basis for this dependence [7], in order to further
understand the complex dynamics associated with vitrifica-
tion. The first demonstration of Eq. (1), for o-terphenyl
(OTP) using c = 4 [10–12], was motivated by the fact that
the effective intermolecular potential of OTP is well-de-
scribed by the Lennard-Jones (LJ) [6–12] equation [13]

UðrÞ ¼ Ar�12 � Br�6; ð2Þ
where A and B are constants and r is the intermolecular
distance. This involves the approximation that a group of
atoms comprising a molecule can be treated as a single par-
ticle. The exponent of 6 in the second term of Eq. (2) is gen-
erally valid for van der Waals attractive interactions;
however, the repulsive exponent varies among materials
[14,15]. For dense liquids a common simplification is to in-
clude only the repulsive term, since for local properties the
attractions primarily exert only a mean-field, density-
dependent pressure. Such a minimum description arises
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Table 1
Scaling exponent from the IPL

cG [7] c

Eq. (5) Eq. (1) [8]

OTP 1.2 1.7 4
Polyvinylacetate 0.7 0.7 2.5
Polymethylmethacrylate 0.7 0.7 1.25
Salol 1.9 3.1 5.2
Propylene carbonate 1.4 2.1 3.7
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from the fact that in a dense liquid the attractive forces
from the many neighbors of a given molecule essentially
cancel [16]; this simplification is also consistent with the
fact that in liquids, the static structure factor at intermedi-
ate and large wave vectors is sensitive only to the repulsive
part of the potential [17,18]. Dropping the attractive term
and generalizing the LJ potential leads to an inverse-
power-law (IPL) [19–22]

UðrÞ ¼ Ar�3c: ð3Þ
From such a (purely repulsive) potential, thermodynamic
properties such as the total energy, volume, and entropy
can be expressed functions of r3c or Vc [20]. Thus, the
IPL serves as an underpinning for the scaling of Eq. (1),
with c employed as a material-constant parameter used to
obtain superpositioning of experimental s(T,V) data [1].

The assumptions of spherical symmetry and an absence of
strong attractive forces, implicit in the IPL potential, are not
obviously justified. Certainly the interactions are not spher-
ically symmetric in polymers given the plethora of covalent
intramolecular bonds or in associated liquids with strongly
directional bonds. One justification for interpreting the scal-
ing in terms of the IPL is that these strongly directional inter-
actions are relatively insensitive to pressure (as shown for
polyoxybutylene [23]). This means that they are essentially
constant with respect to the TVc scaling variable. This rea-
soning may also justify the very low values found for c for
some H-bonded liquids [8], since only a fraction of the poten-
tial actually senses volume changes (For this same reason
strongly H-bonded liquids do not always scale).

From this TVc scaling a number of features of the glass-
forming dynamics can be described or predicted: (i) the
Boyer–Spencer–Bondi rule [3] that the product of the ther-
mal expansion coefficient, aP ¼ V �1dV

dT

��
P

� �
, and the glass

transition temperature is approximately a universal con-
stant for polymers (i.e., aPTg � 0.18) [24]; (ii) the constancy
(pressure independence) for a given material of the relaxa-
tion time at the dynamic crossover [25]; (iii) the decrease in
fragility with pressure for all non-associated organic glass-
forming liquids and polymers [25]; and (iv) the nature of
the T-, P-, and V-dependences of the normal mode of poly-
mers [23]. Despite these successful developments from the
dynamic scaling, it remains of interest to explore the origin
of the scaling exponent. The parameter c cannot be deduced
from consideration of the molecular structure (of course, the
same is true for other dynamic, as well as thermodynamic,
properties). Thus, how can c be obtained other than by
empirical superposition of relaxation times? We describe
herein routes to the determination of c from molecular prop-
erties or thermodynamic (equation of state, EOS) data.

2. Results

2.1. Grüneisen parameter

Notwithstanding the limitations of the IPL description
of the intermolecular potential described above, the IPL
potentially offers a connection to the scaling exponent c.
The Grüneisen parameter, which is a measure of the anhar-
monicity of lattice vibrations, is defined formally in terms
of the volume dependence of the phonon frequency, x [26]

cG ¼ �
d ln x
d ln V

¼ r dx
3xdr

: ð4Þ

This mode Grüneisen parameter [27] can be related to the
intermolecular potential through the force constant,
K � d2U

dr2 , which in the harmonic approximation is propor-
tional to x2. Eq. (3) then gives [28,29]

cG ¼
1

2
cþ 1

3
: ð5Þ

Thus, through the parameter cG the scaling exponent can
be connected to the steepness of the intermolecular poten-
tial. In the vicinity of Tg, cG shows only small variation
with temperature [30,31], falling in the range 1 6 cG 6 4.
From Eq. (5) this corresponds to c in the range from 1 to
7, consistent with experimental values of the scaling expo-
nent [8]. Since cG is defined in terms of phonon frequencies,
the relevant value is for the solid (glassy) state, even though
the scaling exponent is determined from measurements on
the equilibrium liquid.

There is an alternative method of defining the Grüneisen
parameter. From Eq. (4) cG can be expressed in terms of
thermodynamic properties [30]

cG ¼
V aP

CVjT

; ð6Þ

in which CV is the isochoric heat capacity and jT is the iso-
thermal compressibility. cG calculated using Eq. (6) were
reported in Ref. [7]. These are reproduced in Table 1, along
with the scaling exponent; the agreement is good consider-
ing the approximate nature of the analysis.

Substituting for aP, CV, and jT and using the Maxwell
relations

cG ¼ ðV =T ÞdS
dV

����
T

dS
dT

����
V

:

�
ð7Þ

As stated above, when Eq. (3) is valid for thermodynamic
properties, the entropy can be expressed as a function of
Vc; thus [20]

SðT ; V Þ � Sideal ¼ I2ðTV cÞ; ð8Þ
where Sideal is the ideal gas entropy and I2 is an unknown
function. Taking the derivatives in Eq. (7) and noting that

dSideal ¼
CV;ideal

T
dT þ k

V
dV ; ð9Þ



Table 2
Scaling exponent from PVT

c

Eq. (1) [8] Eq. (12)

KDEa 4.5, 4.8 4.8
DGEBA 2.8, 3.6 4.0
Polymethylmethacrylate 1.25 1.9

a Cresolphthalein-dimethylether.
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where k is Boltzmann constant and CV,ideal = 3k/2, we
obtain

cG ¼
T cV cI02 þ k

TV cI02 þ 3 k=2
: ð10Þ

Since k is small compared to TV cI0, we find that cG � c.
Explicit solution of Eq. (7) using a functional form for
Eq. (1) recently derived from an entropy model [32] gives
the exact result cG = c [7].

2.2. PVT measurements

From Eq. (1) it is straight forward to show that [2]

c ¼ � 1

T asðT Þ
; ð11Þ

in which as is the isochronic thermal expansion coefficient,
as ¼ V �1dV

dT

��
s
. This equation has been verified for 19 differ-

ent glass-formers, with as usually determined from relaxa-
tion measurements together with the EOS for the liquid
[2]. Since at Tg the relaxation time is constant (as seen from
relaxation measurements carried out at elevated pressures
[8]), Eq. (11) becomes

c ¼ T gV �1
g

dV g

dT g

� ��1

; ð12Þ

where Vg refers to the specific volume at the glass transi-
tion. If PVT data are available to sufficiently low tempera-
tures (<Tg), c can be obtained without measuring s.

We illustrate this in Fig. 1 with PVT data for diglyci-
dylether of bisphenol A (DGEBA) having a degree of poly-
merization equal to 5 [33]. The glass transition temperature
at each pressure is determined from the intersection of lin-
ear fits to the liquid and glass data, yielding as(Tg). Table 2
shows a comparison of the c calculated from PVT measure-
ments using Eq. (12) compared to the value obtained by
superposition of relaxation times.
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Fig. 1. PVT data for DGEBA [33]. The solid symbols are Vg, the T-
dependence of which yields as and via Eq. (12) the scaling exponent c.
2.3. Pressure dependence of Tg

The empirical relation of Simon [34] for the pressure
dependence of the melting temperature has the form

P � P t ¼ a
T
T t

� �c

� 1

� 	
; ð13Þ

where T and P correspond to the melting condition (solid
and liquid in equilibrium), Pt and Tt refer to the triple point
of the liquid (solid, liquid, and gaseous phase in equilib-
rium) and a and c are material constants. As shown by
Hoover and Ross [20], the Simon equation follows directly
from the properties of the IPL, with c = 1 + c�1. Eq. (3)
also gives for the EOS [20]

PV
T
¼ I3ðTV cÞ; ð14Þ

where I3 is an unknown function. However, this expres-
sion is inaccurate due to the neglect of the longer-ranged
attractions. As a first approximation Eq. (14) can be mod-
ified to include a constant background pressure, P0

ðP þ P 0ÞV
T

¼ I3ðTV cÞ: ð15Þ

We choose this form herein for the EOS because it leads to
an equation for the pressure dependence of Tg that has the
form of the Simon equation. To show this, note that the
glass transition corresponds to a fixed value of s; thus,
V ðT gÞ ¼ constant=T 1=c

g , which substituted into Eq. (15)
yields

T gðP Þ ¼ T gð0Þð1þ P�1
0 PÞc=ðcþ1Þ

: ð16Þ
Eq. (16), used empirically to describe the pressure depen-
dence of the glass transition [8,35,36], is identical in form
to the Simon equation.

In Figs. 2–4 experimental PVT data are plotted for three
glass-formers [23,37,38], chosen because they span a range
of c. As can be seen, Eq. (15) provides a reasonable approx-
imation for the EOS, using the c determined from superpo-
sitioning of s(T,P) data. P0 is the only adjustable
parameter. From Eq. (16) the pressure coefficient of Tg in
the limit of low pressure is given by

lim
P!0

dT g

dP
¼ c
ðcþ 1Þ

T gð0Þ
P 0

: ð17Þ

In Table 3 we compare the pressure coefficient calculated
from Eq. (17) to experimental values; the results are in fair
accord. At higher pressures, well beyond the range of the
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Fig. 3. EOS suggested by Eq. (14) (hollow symbols) and Eq. (15) (solid
symbols) for polyoxybutylene [23].
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Fig. 4. EOS suggested by Eq. (14) (hollow symbols) and Eq. (15) (solid
symbols) for chlorinated biphenyl (62% by weight chlorine) [38].
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Fig. 2. EOS suggested by Eq. (14) (hollow symbols) and Eq. (15) (solid
symbols) for polyvinylethylene [37].

Table 3
Pressure coefficient of Tg

c [8] Tg

(P = 0)
(K) [8]

P0

(MPa)
limP!0

dT g

dP ðK=MPaÞ
Experimental [5] Eq. (17)

Polyvinylethylene 1.9 253 900 0.240 0.18
Polyoxybutylene 2.65 199 850 0.155 0.17
Polychlorinated

biphenyl
8.5 277 650 0.310 0.38
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PVT measurements (which are limited to <200 MPa), Tg

decreases more strongly than predicted by Eq. (16).

3. Concluding remarks

The experimental finding that structural relaxation times
for glass-forming liquids and polymers can be superim-
posed when plotted versus TVc suggests that for local
dynamics the intermolecular potential function can be
approximated by an IPL. If correct, this leads to the expec-
tation of a relationship between the scaling exponent c and
other properties. One example is the connection between c
and the Grüneisen parameter. The quantity cG describes
vibrational modes for the solid state, and Eqs. (4) and (6)
are strictly valid only for solids. However, all liquids are
solid-like at short times [39]; thus, the concept of a Grünei-
sen parameter may be appropriate even for the liquid state.
Formally the Grüneisen parameter characterizes the anhar-
monicity of the molecular vibrations, and there have been
previous efforts to relate phonon anharmonicity to struc-
tural relaxation [40–42].

We show that the exponent yielding superpositioning of
s(T,V) data is close to the value of the Grüneisen parame-
ter, the exact relationship being model-dependent. An IPL
intermolecular potential yields Eq. (5), which in turn gives
reasonable values for c (Table 1). However, there are obvi-
ous limitations of this analysis: The relationship between
cG and c is exact for an IPL potential but the latter only
approximates the forces between real, non-spherical mole-
cules. Moreover, it has been found that even when the IPL
provides an accurate description, the exponent (3c in
Eq. (3)) can decrease with increasing temperature [43]. The
s(TVc) scaling is predicated on c being constant. Describing
the supercooled dynamics with an entropy model [7], a
somewhat different relation is obtained, c = cG. This under-
estimates the scaling exponent in comparison to Eq. (5), due
to non-relaxational contributions to Eq. (6) [7].

Following from the IPL potential, the Simon equation
for the pressure derivative of the melting point is obtained,
with an analogous equation for the glass transition temper-
ature (Eq. (16)) used empirically [8,35,36]. We show herein
that the latter can be derived provided that a specific form
for the EOS (Eq. (15)) is assumed. To the extent this EOS
gives an accurate description of experimental PVT data,
values for dTg/dP can be used to estimate c from Eq. (17).

Notwithstanding its theoretical basis, the scaling expo-
nent can be determined directly from PVT data via
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Eq. (12); that is, c is obtained without recourse to superpo-
sitioning of experimental s (T,V). Accordingly, relaxation
times obtained at ambient pressure can be extended to ele-
vated pressures (or to isochoric conditions) by utilizing the
scaling relationship. The only other requirement is knowl-
edge of the EOS, which is deduced from the same PVT
data yielding the scaling exponent.
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