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ABSTRACT
A broad variety of liquids conform to density scaling: relaxation times can be expressed as a function of the ratio of temperature to density,
the latter raised to a material constant γ. For atomic liquids interacting only through simple pair potentials, the exponent γ is very nearly
equal to n/3, where n is the steepness of the intermolecular potential, while for molecular liquids having rigid bonds and built using the same
interatomic potential, γ > n/3. We find that for this class of molecular liquids, γ = n/δ, where the parameter δ relates the intermolecular
distance to the density along an isomorph (the line of approximately constant dynamics and structure). δ depends only on the molecular
structure and not the interatomic potential.

https://doi.org/10.1063/1.5098455

INTRODUCTION

The dynamics of viscous liquids is very sensitive to tempera-
ture and pressure. Close to the glass transition, small changes in
temperature or pressure can change the relaxation time, viscosity,
and diffusion coefficient by many orders of magnitude. Further-
more, the temperature and pressure dependences of the dynamics
differ greatly among materials. We are still far from being able to
predict liquid dynamics based on the molecular structure—a fun-
damental understanding of this has long been a goal of condensed
matter physics.1–6

An important development in the understanding of the dynam-
ics of supercooled liquids was the discovery of density scaling, the
fact that the relaxation times τ and other dynamic quantities can be
expressed as a function of the ratio of temperature and density, the
latter raised to a material constant γ7–11

τ = f (ργ/T). (1)

This property has been verified for more than 100 liquids and
polymers,12,13 with the latter generally having smaller γ. The
only materials deviating from Eq. (1) are the ones that undergo
changes in structure (such as the degree of hydrogen bonding)
with temperature and pressure. A related property is isochronal
superpositioning: the shape of the relaxation spectrum, although

it varies with the state point, depends only on the relaxation
time.14,15

For a system of particles interacting through an inverse power
law (IPL) pair potential u(r) ∝ r−n, both density scaling and
isochronal superposition are exact, with γ = n/3, when quantities are
expressed in reduced units16,17

l0 = ρ1/3, t0 = ρ−1/3√m/kBT, �0 = kBT. (2)

The difference between scaling using reduced and unreduced units
is negligible in the supercooled regime; however, at higher temper-
ature, the difference can be substantial.18 Using computer simula-
tions, a broad class of liquids has been discovered showing density
scaling and isochronal superposition to a very good approximation.
These systems have so-called isomorphs, lines of constant structure,
and dynamics, in reduced units, in their (ρ, T) phase diagram and
show strong correlation between the fluctuations of the potential
energy ∆U and virial ∆W, with the proportionality constant being
the density scaling exponent γ.19 For simulated liquids with iso-
morphs, γ in general varies with state point although it is to good
approximation a function of density.20 However, for reasons not
completely understood, at least some real liquids are well described
using a constant γ, even for large density changes.21–23 Systems that
have isomorphs have been called Roskilde-simple, or R-simple sys-
tems,24 and include atomic liquids and mixtures but also simple
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molecular and polymeric liquids. Among real materials, nonassoci-
ating liquids and polymers as well as ionic liquids are expected to be
R-simple, while those with strong intermolecular hydrogen bonds
are not.25 However, quantifying ∆U and ∆W for real materials is
challenging.26

Based on the relation γ = n/3 for the inverse power law poten-
tial, it is natural to expect that for liquids that exhibit density scal-
ing, the exponent γ is in some way related to the steepness of the
intermolecular potential. This relationship is clear for simulated
atomic systems interacting through a pair potential u(r); for these
systems, γ can in fact be accurately estimated from the derivatives
of u(r) near the most likely interatomic distance.27,28 However, it is
not yet known to what extent this relationship can be extended to
molecular and polymeric liquids, where the intermolecular potential
depends not only on distance but also on the relative orientation of
two molecules or chains and on their internal degrees of freedom.
The key question is what is the relevant potential. Does there exist
for these systems an “effective” intermolecular or intersegment pair
potential ueff (reff ), related to γ in the same way as u(r) is in atomic
systems, and if so, what are ueff and reff ? Herein, we attempt a first
step toward this generalization on simple molecules and polymer
chains defined by pair potentials and rigid bonds, which are known
to be R-simple.

RESULTS AND DISCUSSION

Simulations are carried out using the RUMD simulation soft-
ware,29 all in the NVT ensemble with a Nose-Hoover thermo-
stat.30 We study three different interatomic potentials: the standard
12-6 Lennard-Jones (LJ) potential31 and two inverse power laws with
n = 12 and n = 18 (IPL12 and IPL18, respectively)

uLJ(r) = 4ε[(
r
σ
)

−12
− (

r
σ
)

−6
], (3)

uIPL12(r) = ε(
r
σ
)

−12
, (4)

uIPL18(r) = ε(
r
σ
)

−18
. (5)

For each potential, we simulate the single-component atomic liq-
uid as well as three molecules: (a) an asymmetric dumbbell (ADB)
shaped molecule;32–34 (b) the Lewis-Wahnström o-terphenyl (LW-
OTP) model, a rigid trimer with a bond angle constrained to 75○;35,36

and (c) a freely jointed chain of 10 atoms linked by rigid bonds.37 All
systems have been found in previous studies33,37 to have isomorphs
to good approximation. System sizes were 4000, 2000, 9000, and
2000 atoms for the atomic, ADB, LW-OTP, and chain molecules,
respectively. All nonbonded interactions were truncated and shifted
at r = 2.5.

Each system was simulated at a number of state points along an
isomorph following the methodology of Ref. 38. Beginning at a state
point (ρ0, T0), the scaling exponent γ and correlation coefficient R
were determined from the fluctuations of the potential energy U and
virial W

γ =
⟨∆U∆W⟩

⟨(∆U)
2
⟩

, (6)

R =
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√
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2
⟩⟨(∆U)

2
⟩

. (7)

To step to the next state point along the isomorph, a small density
change δρ = 0.01 was made along with the temperature change δT
required to remain on the isomorph defined by ∆ln T = γ∆ln ρ. The
process was then repeated to trace out an isomorph from (ρ0, T0) to
(ρ1, T1), with a ∼30% density change, of the same order as some of
the largest density changes investigated experimentally (for exam-
ple, cumene,22 polyurea,21 and nitrogen23). The values of γ and R
as a function of density along these isomorphs are shown in Fig. 1,
with the initial state points and average values of γ and R given in
Table I.

Dependence of γ on molecular shape

The two atomic IPL systems with n = 12 and n = 18 have perfect
pressure-energy correlations, i.e., R = 1, and constant γ = n/3. The LJ
system still has almost perfect UW correlations (R > 0.99, decreasing
very slightly with decreasing density), but the effective slope of the
potential is steeper resulting in larger γ which depends significantly
on density.

For all three interatomic potentials, γ increases significantly
going from atomic to molecular liquids, and for all three potentials,
the order from the smallest to largest γ is atomic, ADB, LW-OTP,
and finally chain molecules. Note that γ is no longer constant for the
IPL based molecules although its density dependence is quite weak.
The molecular systems are also more weakly correlating (smaller R)
than the corresponding atomic ones, and R decreases in the same
order that γ increases. R also decreases with increasing density, the
opposite behavior to that of the atomic LJ liquid.

FIG. 1. Scaling exponent and correlation coefficient determined from U-W correla-
tions along the isomorphs of Table I for atomic systems and the dumbbell, LW-OTP,
and chain molecules consisting of Lennard-Jones, IPL-12, and IPL-18 atoms.
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TABLE I. Summary of the isomorph simulated for each liquid: minimum and maximum density and temperature, average
correlation coefficient and scaling exponent [Eq. (6)], and exponent δ relating intermolecular distance to density. Its product
with the average scaling exponent in the last column is approximately equal to the steepness of the interatomic potential,
which is the main result of this paper.

Potential (ρ0, T0) (ρ1, T1) R̄ γ̄ δ n = γ̄δ

Atomic LJ (1.00, 1.00) (1.30, 3.58) 0.99 4.96 3.00 14.9
IPL12 (1.00, 1.00) (1.30, 2.86) 1.00 4.00 3.00 12.0
IPL18 (1.00, 1.00) (1.30, 4.83) 1.00 6.00 3.00 18.0

Asymmetric dumbbell LJ (1.64, 0.29) (2.14, 1.29) 0.96 5.66 2.68 15.2
IPL12 (1.64, 0.12) (2.14, 0.41) 0.93 4.66 2.63 12.2
IPL18 (1.64, 0.17) (2.14, 1.05) 0.96 6.97 2.61 18.2

Lewis-Wahnström OTP LJ (1.00, 0.78) (1.30, 4.09) 0.88 6.27 2.36 14.8
IPL12 (1.00, 0.60) (1.30, 2.39) 0.86 5.22 2.36 12.3
IPL18 (1.00, 0.70) (1.30, 5.33) 0.90 7.69 2.36 18.1

Freely jointed chain N = 10 LJ (1.00, 0.71) (1.30, 3.90) 0.83 6.49 2.28 14.8
IPL12 (1.00, 2.24) (1.30, 9.14) 0.82 5.35 2.22 11.9
IPL18 (1.00, 2.77) (1.30, 22.6) 0.85 7.98 2.26 18.0

As has been found previously,32–37 the dynamics along the iso-
morph, in reduced units, are essentially invariant (Fig. 2): both the
mean square displacement and self-intermediate scattering func-
tion practically overlap at the highest and lowest densities. This
means, the difference between isomorphs and isochrones is very
small, and in fact, the following results do not qualitatively change
if we use isochrones (by requiring constant relaxation time or con-
stant mean square displacement in reduced units) instead of tracing
isomorphs.

Even though isomorph theory predicts that only the molecular
center of mass radial distribution function (rdf) should be invari-
ant, the intermolecular part of the usual atomic radial distribution

FIG. 2. Self-intermediate scattering function at q corresponding the maximum of
the static structure factor for each state point (solid lines) and mean square dis-
placement at the two extreme state points of the isomorph of Table I for each of
the four liquids based on LJ potential. Black: (ρ0, T0); Red: (ρ1, T1) For the chain
molecule, the autocorrelation function of the end-to-end vector of the chains is also
shown in the left panel (dashed lines).

function (rdf) is also approximately invariant along an isomorph, as
shown previously for the LJ system and the three LJ-based molec-
ular liquids.32–38 In Fig. 3(a), we examine more carefully the first
peak in the intermolecular part of the rdf. The rdf plotted against
reduced distance rρ1/3 is an isomorph invariant for the IPL systems
(for which this invariance is mathematically exact) but also to an
excellent approximation for the LJ system. For the molecular sys-
tems, however, there is a systematic deviation from this structural
invariance, with the first peak occurring at shorter reduced r as we

FIG. 3. Intermolecular part of the radial distribution function for the simulated liq-
uids, in the region around the first peak, plotted against reduced length, i.e., r
scaled by ρ−1/3 (a) and r scaled by ρ−1/δ (b), where δ for each system was
determined from Fig. 4 and is shown in Table I.
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move along the isomorph toward higher density and temperature.
This may be expected due to the following effect: For an atomic sys-
tem, moving along an isomorph and decreasing the density, say,
by a factor λ, the structure remains invariant and all interatomic
distances increase by a factor of λ1/3, number 3 originating in the
number of spatial dimensions. Consider now a molecular system
with rigid bonds. For the same volume change, the distances between
bonded atoms remain constant, although very generally one would
expect the average interatomic distance to still be proportional to the
volume per particle and scale as λ1/3. Therefore, the distance between
unbonded atoms must increase by more than λ1/3 to compensate for
the rigid bond structure.

To check this, we plot the interatomic distance vs density along
an isomorph in Fig. 4. As a measure of the interatomic distance, we
choose rH , the distance at which the rdf reaches half of its maxi-
mum value. We use this distance and not, for example, the position
of the maximum or the most probable distance to exclude contri-
butions to the rdf from atoms other than the nearest neighbors;
rH is also the distance used in Ref. 27 to correlate the density scal-
ing exponent with the steepness of the interatomic potential for
the atomic LJ system. Plotting rH as a function of density, we see
that for the atomic liquid, it scales as ρ1/3 as expected. However,
for the molecular liquids, the interatomic distance has a stronger
density dependence, which is well described by a power law ρ1/δ,
with δ < 3. Returning to Fig. 3(b) and plotting the rdf as a func-
tion of ρ1/δr, we now obtain excellent collapse of the entire first rdf
peak.

From Fig. 4, we make two key observations: First, the expo-
nent δ, describing how intermolecular distance varies with density,
depends on the molecular structure and is practically independent of
the interatomic potential (LJ, IPL-12, or IPL-18). Second, if we com-
pare to Fig. 1, for a given potential, there is an inverse relationship
between δ and the scaling exponent γ. Plotting the average value of
γ along the isomorph against 1/δ in Fig. 5, we see not only an excel-
lent correlation but also a quantitative one—the product γδ is equal
to the average steepness of the interatomic potential: 12 for IPL-12
potential, 18 for IPL-18, and n ∼ 15 for the LJ potential. This suggests

FIG. 4. Double logarithmic plot of the interatomic distance (defined as distance to
half maximum of the intermolecular part of the rdf) vs density. Both quantities are
normalized relative to their respective values at (ρ0, T0).

FIG. 5. Average scaling exponent γ plotted against 1/δ for the simulated systems.
The lines indicate Eq. (8), i.e., the scaling exponent is equal to the steepness of the
interatomic potential divided by the exponent connecting density to intermolecular
distance along an isomorph.

the following way to generalize the connection of the intermolecular
potential with the scaling exponent to molecular systems:

γ = n/δ. (8)

State point dependence of γ

For atomic systems, it is possible to accurately estimate γ at
a given density from the interatomic potential.28,39 One defines an
effective steepness n(ρ) of the potential by fitting an inverse power
law in some range of distances near the first rdf peak, with the best
results obtained using

n(ρ) = −2 − r
u(3)(r)
u(2)(r)

∣

r=rP(ρ)
, (9)

where u(n)(r) is the nth derivative of u(r). The distance rP(ρ) is the
most likely intermolecular distance, i.e., the distance where r2g(r) is
maximum where g(r) is the rdf. Then, the scaling exponent is given
by γ(ρ) = n(ρ)/3.28

We can now generalize this to molecular systems: if δ, which
depends only on the molecular structure, is known, n(ρ) is calcu-
lated in the same way as for atomic systems, γ(ρ) = n(ρ)/δ. We test
this method in Fig. 6: For each state point along an isomorph, we
obtain rP(ρ) and plot γ(ρ)δ as a function of rP. The data for the
atomic LJ liquid and three molecular liquids based on the LJ poten-
tial collapse to good approximation onto a single curve; moreover,
the scaling exponent is very well described by n(ρ) calculated for the
LJ potential.

We have restricted our analysis to molecules based on a sin-
gle interatomic potential (with variation of the potential parameters,
such as the two atom sizes in the asymmetric dumbbell molecule)
and rigid bonds. It would be interesting to assess to what extent the
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FIG. 6. γ(ρ)⋅δ plotted against the most probable intermolecular distance for each
state point [distance where r2g(r) is maximum]. The lines indicate the steep-
ness of the interatomic potential. For the LJ potential, this is calculated from
Eq. (9).

results herein can be applied to simulations of more general molec-
ular structures as well as to experimental results on real liquids.
Preliminary simulation results indicate that liquids having harmonic
rather than rigid bonds behave similarly, as do angle-dependent
potentials, but not those with intramolecular barriers to relaxation
(such as dihedral potentials in a polymer).

For an atomic liquid, we expect, on general grounds, that the
interatomic distance will scale with ρ−1/3. The generalization rH(ρ)
∝ ρ−1/δ works well for the data of Fig. 4, but it is just an empirical
fit and may not be general. δ here plays the role of a dimensional-
ity. For example, we can imagine that when compressing a system of
long rigid rod-shaped molecules while maintaining as much as pos-
sible a constant structure, each molecule is compressed in the two
lateral dimensions but not the longitudinal one, leading to δ ≃ 2.
Indeed, for the molecules studied here, δ seems to be related, loosely
speaking, to the aspect ratio of the molecules. It is not clear whether
this is the case for different types of interatomic potentials. Consider
the S12-6 potential proposed in Ref. 40, which unlike the LJ and IPL
potentials contains a finite atomic size; the relevant interatomic dis-
tance would probably be expected to scale with (ρ − ρ0)−1/3 rather
than ρ1/δ.

Koperwas et al.41 suggest an alternative, but related, approach
to connecting γ to the intermolecular potential. They construct
effective intermolecular potentials for a 4-site anisotropic rigid
molecule by averaging selected relative molecular orientations and
considering the distance from the center of mass of one molecule to
the center of mass (or alternatively the nearest atom) of the other.
Further work on both approaches would be interesting to determine
what classes of molecules each can be generalized to and what the
relation is between the two.

From the analysis of Fig. 4, δ is to very good approxima-
tion constant for each system studied. However, a weak state point
dependence can be inferred by the change of γ along an isomorph
for the IPL-based LW-OTP and chain systems seen in Fig. 2: γ = n/δ
would be strictly constant if δwere constant. These two systems have
less exact isomorphs, their U-W correlation coefficients being <0.9,

and therefore, they may exhibit sufficient changes in the structure
along an isomorph to result in an observable change of δ.

SUMMARY

For molecules based on a single interatomic potential and
rigid bonds, we find that each molecular structure (topology, bond
lengths, and atomic sizes) is associated with an exponent δ con-
necting intermolecular distance to density along an isomorph. δ,
which compensates for the invariance of molecular bonds to pres-
sure changes in order to fill space and maximize the combinatorial
entropy, ranges from 3.0 for atomic liquids to 2.2 for a freely jointed
polymer chain. This exponent also links the steepness of the inter-
atomic potential to the density scaling exponent γ, thus explaining
quantitatively why molecules built from the same interatomic poten-
tials exhibit different scaling exponents. This work brings us closer
to a theory able to predict the pressure and temperature dependent
dynamics of a material from its molecular structure.
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