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Abstract

Previously we reported experimental data, on natural rubber networks in tension and compression, which deviated from (he constraint
models of rubber elasticity. Equivalent experiments were carried out on crosslinked polybutadiene, and similar discrepancies with theory
observed. An alternative approach, based on the tube model of chain entanglements, was found to provide a more accurate description of the
experimental data. However, physical interpretation of the values for the model’s parameters is problematic. Published by Elsevier Science

Ltd.
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1. Introduction

Developing constitutive equations which accurately
describe the elastic response of elastomers is an essential
part of understanding the behavior of this important class of
materials. Constitutive equations also have also practical
value, for example in the finite-clement modeling of rubber.
Although phenomenological expressions may serve the
latter purpose well, they cannot offer insights into the origin
of rubber elasticity. This requires molecular-based theories.

We have recently carried out experiments in which both
extension and compression data were obtained on the same
sample test pieces [1]. Results for natural rubber networks
[2,3] revealed that, while molecular theories of rubber elas-
ticity fit the data well for a single mode of deformation,
discrepancies arise when compression and tension results
are analyzed together. In this paper we report results for
crosslinked polybutadiene, and extend our comparison to
a tube-model of elasticity.

2. Background

The value of finding constitutive equations that provide
insights into molecular behavior, while also accurately
describing experimental results, has long been appreciated
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[4-7]. The Mooney-Rivlin equation is commonly used to
describe results for rubber in tension, although it is not a
valid constitutive relation, since its accuracy does not
extend to all modes of deformation [6-8]. The popularity
of the Mooney-Rivlin equation is due, at least in part, to its
simplicity; for the engineering stress,

our = (2C) + 2C,/A) Xf(A) (1)

where A is the stretch ratio and f(A) = A-A%. When elasto-
mers are subjected to both tension and compression, it is
well known that data deviate from Eq. 1 [9,10}. Notwith-
standing this failing, as well as the phenomenological basis
of the equation, some interpretation of the Mooney-Rivlin
parameters in terms of molecular quantities can be made
[6,7,11-14]. C, is assumed to be proportional to the chemi-
cal crosslink density, and C, is taken as a measure of entan-
glement constraints.

If such an interpretation is correct, Eq. I shows that the
effect entanglements have on stress is alleviated by strain,
This idea leads to a general expression having the form:

o= G(1 + h(A)) Xf(A)

where the **damping function’” h()) is.a deci
tion of strain (<A™ for the Moo
[13,15,16]. G, is the modulus of a:

G. = (v = wWRT

having p. junctions and v elastically a¢
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volume. These quantities are related by
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where ¢ is the junction functionality. Eq. 3 represents an
extreme of “‘ideal’’ behavior, the other being affine defor-
mation, for which G, = #RT [6-8]. These expressions all
assume that the primary molecular weight of the network is
very large (i.e., chain ends are negligible); otherwise the
cycle rank of the network replaces the quantity v-p, [19].

The concepts underlying Eq. 2 are given a molecular
basis in Flory’s constrained junction model of rubber elas-
ticity [20,21]. This treatment considers the manner in which
neighboring segments sterically hinder the Brownian
motion of network junctions. The entanglement contribu-
tion to the stress decreases with strain according to
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The parameter «, assumed to be a constant, quantifies the
severity of the constraints on the junction fluctuations.

The constrained junction model was subsequently modi-
fied so that the constraints suppressed fluctuations of the
chains’ mass centers, rather than their junctions [22]. This
advancement was generalized in the continuously-
constrained chain (CC) model [23,24], which employs the
more realistic notion that constraints act all along the chain.
The CC model gives
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where O, which may vary from () to 1, is the relative
distance from the junction sites (i.e., the distance expressed
as a fraction of the strand length), and W(®) is a distribution
function describing the distance-dependence of the
constraints. If the constraints act uniformly along the
chain, W(0) is unity [23]. For the CC model, the constraint

parameter k() is a function of position

— 2 M) —
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The topological constraints of the foregoing models are
identical to the entanglement constraints governing the low
frequency dynamics of polymer melts. The latter are often
modeled as a confining tube surrounding the chain [25].
This leads to the idea that the equilibrium modulus of cross-
linked rubber includes a contribution from the same inter-
actions that give rise to the plateau modulus, Gy, of the
corresponding melt. Thus, Graessley obtained [26]

0= (G + Gy XT,) X f(A) (13)

where T, is the Langley “‘trapping factor”, equal to the
fraction of entanglements whose paths all attach to the
network [27,28]. Note that although this expression offers
a prediction for the crosslink density, it does not account for
the nonlinear elasticity of real networks.

Rubinstein and Panyukov (R-P) [29] expanded on Graes-
sley’s approach, by assuming non-affine deformation of the
network, whose chains fluctuate within a tube of entangle-
ments. The constitutive result for their model is

hp—p = %ﬂm - A2 4! (14)

whereby all entanglements contribute to the stress Gi.e.,
T, =1).

An alternative tube model has been proposed Heinrich
and coworkers [30-32]. Its principle departure from the
approach of Rubinstein and Panyukov is to allow for
constraint release. Constraint release is the mitigation of
lateral constraints on a chain by Brownian motion of the
tube. This effect is believed to be important in the rheology
of melts, although the detailed nature of the process is in
dispute [25,33-35]. In the conventional use of the term,
constraint release is applicable only to melts. In networks,
it refers to tube relaxation processes arising from network
defects, such as dangling chain ends or an inhomogeneous
distribution of junctions.

The constraint release model (CR) yields [30-32]

o = Ge 202 —27F)
TG AT -ah

where G, is less than or equal to Gy (ie., T, < 1). The
parameter 8 (0= B=<1) is a measure of the effect
constraint release has on the Jocal deformation. For affine
deformation B equals unity, which corresponds to no
constraint release.

(15)

3. Experimental

Polybutadiene (Budene 1209 from the Goodyear Tire &
Rubber Co.) containing 0.44 phr dicumyl peroxide, with
1.0 phr 1,2-dihydro-2,2,4-trimethylquinoline added as an
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Fig. 1. The stress divided by the strain function f(A) versus the reciprocal of
the stretch ratio for two natural rubber networks crosslinked with 1 (©O00)
and 2 (O O O) phr dicumyl peroxide respectively {2,3], ajong with the
respective least-square-fits of the CC model, Eq. 11, (- - ~) and the R-P
model, Eq. 14 (—) to the extension data. The upturn at high extension for
the more cross-finked NR-1, reflecting strain-induced crystallization, is
ignored. Neither expression can accurately describe simultaneously both
tension and compression results.

antioxidant, was compression molded at 150°C for 120
minutes. Both films (65 X 13 X 1.6 mm) and cylindrical
samples (12.2mm diameter X 17.8mm high) were
prepared. All measurements were carried out at room
temperature on neat, unswollen networks.

The apparatus used to obtain compression data on the
rubber cylinders is described in detail elsewhere [I].
Bonded cylinders (cyanoacrylate adhesive) were dead-
weighted and the consequent change in sample length
meusured using a linear voltage differential transducer.
The correction to the stress due to shear forces at the cylin-
der ends is given by [36]

o= _.OZ'L (16)

( 1+R; )

2
where @y, is the ratio of the applied force to the initial
cross-sectional area of the cylinder, o is the engineering
stress corresponding to homogeneous deformation, and R,
and H, are the initial sample radius and height, respectively.
A comprehensive assessment demonstrated that Eq. 16

corrects experimental data to an accuracy of better than
5% over substantial ranges of strain [1].

Extension measurements were carried out at small strains
(A = 1.8) by extending cylindrical samples through the use
of a screw-driven stage on the sample apparatus used for
compression tests. For higher extension, data was obtained
on films with attached weights, the resulting strain measured
with a cathetometer. Two points were obtained per day,
allowing a minimum of 8 hours for the rubber to attain
mechanical equilibrium.

We also show herein elastic data for natural rubber
networks. Details of these samples and their measurements
have been reported [2].

4. Results
4.1. Natural rubber networks

Recently equilibrium mechanical measurements were
obtained on natural rubber (NR) networks [2,3], using the
experimental technique described above. A comparison of
these results to the CC (Eq. 11) and R&P {Eq. 14) models
are shown in Fig. 1. The fitted curves conform well to the
stress/strain data over a single mode of deformation (eg.,
tension); however, the agreement is unsatisfactory when
both compression and tension data are considered together.

Although no values for the fitting parameters of these
models could improve the agreement with the data, compar-
isons like those in Fig. 1 are limited by the large scatter in
the experimental results. This is primarily due to the ordi-
nate variable, o/f(A), which becomes unstable as A
approaches unity. Interestingly, however, experiments
carried out at vanishingly small strains suggested there is
a discontinuity near A = 1 {37}, which would also contribute
to the scatter. The noise in the data is absent when the results
are plotted simply as the engineering stress versus the strain
(Fig. 2).

The data in Fig. 2 bas been truncated to A < 2 to avoid
complications from strain-induced crystallization. Also
shown are the least-squares fit of the CR model, with the
parameters obtained for Eq. 15 listed in Table 1. Since this
model includes a third adjustable parameter, some improved
agreement with experiment is expected. Nevertheless,
systematic deviation from experiment remains.

The natural rubber networks in Figs. 1 and 2 were formed
using dicumyl peroxide; therefore, the number of network
chains per unit volume can be calculated from the equation
of Wood [38]

v="740X [0"%p(c - 0.31) a7n

where the mass density, p = 0.91 g/cm® and ¢ is the concen-
tration (in *‘phr”’, or parts per hundred parts of rubber,) of
the peroxide. The values of » from Eq. 17 for the two natural
rubber networks are listed in Table 2. IR
If the free radical crosslinking reaction of NR is accom-
panied by substantial side reactions, the resulting networks
would contain defects, such as chain ends. and possibly
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Fig. 2. The natural rubber data of Fig. 1 plotted as the engineering stress
versus A, along with the Icast-squares fits of the CR model, Eq. 15. The
best-fit values of the parameters are Jisted in Table 1.

inhomogeneity of the crosslink density. A recent study
suggested that dicumyl peroxide promotes chain scission
during crosslinking of natural rubber [39], which potentially
influences the constraint release process modeled by the B
parameter in Eq. 15. This would, of course, limit the utility
of the comparison in Fig. 2 between model and experiment.
- There are no reports of sulfur vulcanization inducing
chain scission, and hence analysis of sulfur-crossiinked
NR networks is useful. Rivlin and Saunders [40] measured
NR vulcanizates over a broad range of strains, using infla-
tion‘to obtain compression data. These results are repro-
duced in Fig. 3, along with the least squares best-fit of
both Egs. 11 and 15. For the CC model, agreement with
the experimental data is limited to tension, similar to the

Table 1
Results of fitting NR and PBD data
CC model (Eq. 11) CR model (Eq. 15) Gy
G (kPa) « ¢ Gc(kPy) G, (kPa) B (kPa)
NR-1 65 3 4 244 0 ~0  360*
NR-2 103 3 4 360 62 ~0 ]
NR® 78 6 4 106 64 01 |
PBD 393/420° 2/1° 6 549 30 { 1300"

® Reference [48].

® Sulfur vulcanized natural rubber from reference [40].
¢ Least-squares fit 1o extension / compression data,

4 Reference {49].

Table 2
Network chain density (», in moles/m?) of dicumyl peroxide cured natural
tubbers

Wood equation CC model Heinrich model
(Eq. 17) (Eq. 11%) (Eq. 159

NR-1 46 52 200
NR-2 110 83 290

* Using Eq. 3 (which ignores chain ends) and assuming v = 2.

results for peroxide-cured NR. The performance of the CR
model is comparable for A > 1, and superior for the
compression data. Values of the various fitting parameters
are listed in Table |.

4.2. Polybutadiene network

Mechanical equilibrium data was obtained for the cross-
linked PBD in both tension and compression. This material
differs in two principle ways from the NR networks. The
junctions of the PBD will have higher functionality, since
some chain reaction accompanies free-radical crosslinking
of the 1,4-polydiene units [41,42]. This confluence of chains
at a junction site should increase the severity of the
constraints on the network motion. A second difference
between the two materials is the higher plateau modulus
of PBD in comparison to NR [28]. This should yield higher
values for the fitting parameters, Gy or G,, of the tube
models (Egs. 14 or 15 respectively), since these quantities
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Fig. 3. The data of Rivlin and Saunders {40] for vulcanized patura) rubber,
along with the best-fit to the CR (Eq. 15) and CC (Eq. 1) models. Agree-
ment with the latter is limited to extension (A<t
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Fig. 4. Best fit of the CC model, Eq. 11, to the data for the PBD network in
compression (—; C, = 429 kPa, k = 2, and ¢ = 6) and in tension (- — -
Cy = 393 kPa, k = 1, and ¢ = 6).

refiect the entanglement contribution to the network modu-
lus. Thus, beyond judging the quality with which experi-
mental data can be fit, the values obtained for the fitting
parameters per se allow assessment of the models.

In Fig. 4 are displayed the data for the PBD network,
along with two fits of the CC model. Similar to the results
for NR, tension and compression results can not be
described simultaneously. Instead, we show the respective
least-squared fits to each individually, with the obtained
parameters given in Table 1.

Fig. 5 shows the least-squares fit of the CR model to the
same PBD data. Although there is small systematic devia-
tion for extension, the accuracy of the model is relatively
good. Certainly Eq. 15 conforms better to the data than does
of Eq. 11. However, this may just reflect the availability of
an extra adjustable parameter. Thus the models must be
judged on physical grounds.

5. Discussion

Referring to Table 2, the CC model (Eq. !1) yields values
for the network chain density in good agreement with the »
estimated from the Wood equation, which is based on the
peroxide crosslinking reaction (Eq. 17). The CR model, on
the other hand, yields overly-large crosslink densities. In
comparing the parameters listed in Table 1 for the elasto-
mers, both the crosslink density (viz. G.) and its

T
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Fig. 5. Best fit of the CR model, Eq. 15, to the PBD network data, yiclding
G, = 549 kPa, G, = 30, and 8 = 1.

functionality (¢) are higher for PBD than for NR-1 or
NR-2. We therefore expect motion of the PBD network to
be more constrained [43-46]. Contrarily, the parameter G,,
reflecting topological restrictions on the network chains, is
lower for PBD than NR-1.

The value of G, itself is more than an order of magnitude
lower than the plateau modulus determined for PBD in the
melt [47]. This implies an unrealistically small trapping
factor, given that the molecular weight between crosslinks
for the PBD is less than its molecular weight between entan-
glements. Moreover, G, is lower for PBD than NR (Table 1),
although NR has a larger plateau modulus [48]. Such a
result is counterintuitive, since the chain propagation
accompanying free radical crosslinking of PBD yields ¢ >
4, whercas peroxide crosslinking of NR results in tetrafunc-
tional crosslinks [41,42].

For the NR-1, the best fit to the experimental data is
obtained using G, = 0. Although such a result is untenable,
it parallels earlier work of Heinrich and Kaliske [31,32].
They successfully applied the CR model (Eq. 15) to data

on filled rubber subjected to complex shear deformauons,‘ .

although the values obtained for the fitting paramete
unphysical (e.g., negative Ge and B). Clearly.,_
procedures intended to minimize ditferences w1tl_1
ment may yield material parameters that are. optir
in a mathematical sense. To remedy this, fittit
may be constrained according to knowledg_;, t ;
{49,50], although this entails some degradatlon of the ‘ﬁt,
quality.
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The B values in Table | suggest that there is essentially
no constraint release accompanying deformation of the
PBD. Such behavior can perhaps be reconciled with the
PBD’s high concentration of crosslinks, which are moreover
high in functionality. For all the NR networks herein, the
contribution from constraint release is substantial (8 ~ 0).
In the context of the model, this implies global rearrange-
ment of the network, engendering strong departures from
affine deformation.

6. Conclusion

Accurate constitutive equations can be quite useful for
finite-element modeling, which requires stress-strain rela-
tions over a broad range of deformations. However, the
success of molecular models is mitigated if the obtained
parameters do not offer meaningful physical insights.
Models whose usefulness is limited to their accuracy should
be compared to semi-empirical approaches. There are a
number of functions [51-54] which perform quite well in
this regard. There are also the phenomenological “‘chain
models’” [55-59], which rely on non-Gaussian statistics
(e.g., the inverse Langevin function {6,7]) to obtain stress-
strain laws valid for large deformations. While practical use
can be made of these, the search nevertheless continues for
rigorous molecular models which have sufficient utility. The
models described herein all represent different realizations
of the same idea — that topological constraints influence
the microscopic deformation. This concept is certain to be
an central feature of further theoretical advancements.
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